
ARTICLE OPEN

Targeting LHPP in neoadjuvant chemotherapy resistance of
gastric cancer: insights from single-cell and multi-omics data on
tumor immune microenvironment and stemness characteristics
You-Xin Gao1,2,3,6, Xiao-Jing Guo1,2,3,6, Bin Lin1,2,3, Xiao-Bo Huang1,2,3, Ru-Hong Tu 1,2,3, Mi Lin1,2,3, Long-Long Cao 1,2,3,
Qi-Yue Chen 1,2,3, Jia-Bin Wang1,2,3, Jian-Wei Xie1,2,3, Ping Li1,2,3, Chao-Hui Zheng1,2,3, Ying-Hong Yang4,5✉,
Chang-Ming Huang 1,2,3✉ and Jian-Xian Lin 1,2,3✉

© The Author(s) 2025

Gastric cancer (GC) is a highly heterogeneous and complex malignancy, often characterized by tumor stemness and immune
evasion mechanisms, which contribute to a poor response to neoadjuvant chemotherapy (NAC) and treatment resistance. In this
study, we performed a comprehensive analysis using single-cell and multi-omics approaches on 375 GC samples from The Cancer
Genome Atlas database, along with 141 clinical samples from patients who underwent NAC. We identified key gene modules
associated with stemness and immune traits, and developed a novel stem cell-immune risk score. This score effectively
distinguished responders from non-responders to chemotherapy, and was significantly associated with overall survival. Through
multi-omics analysis, we further elucidated the role of phospholysine phosphohistidine inorganic pyrophosphatase (LHPP) in the
tumor immune microenvironment. Our findings showed that high LHPP expression was closely linked to the increased infiltration of
antitumor immune cells, such as CD8+ T cells, and significantly suppressed the development of stemness characteristics in GC.
Additionally, single-cell sequencing data revealed that tumor epithelial cells with low LHPP expression exhibited heightened
stemness and demonstrated the strongest communication with CD8+-exhausted T cells. We also observed that LHPP inhibited
stemness and chemotherapy resistance in GC cells by regulating the phosphorylation of GSK-3β. In conclusion, LHPP plays a critical
regulatory role in the stemness features and tumor immune microenvironment of GC, presenting a promising biomarker and
potential therapeutic target for personalized treatment of GC.

Cell Death and Disease          (2025) 16:306 ; https://doi.org/10.1038/s41419-025-07614-z

INTRODUCTION
Gastric cancer (GC) is the fifth most common cancer worldwide
and the third leading cause of cancer-related mortality [1]. Owing
to the nonspecific clinical symptoms and insidious onset of GC,
most patients are diagnosed at an advanced stage, with a 5-year
survival rate below 40% post-treatment [2, 3]. In early stage
patients, the 5-year survival rate can reach 90%. The primary
causes of death in patients with advanced GC are tumor invasion
and metastasis, which are significant barriers to treatment efficacy
and pose severe threats to patient health and life expectancy [4].
The standard treatment for advanced GC is multi-agent
chemotherapy; however, most patients develop chemoresistance,
with a median overall survival of less than 1 year [5].
Currently, postoperative adjuvant chemotherapy is an essential

therapeutic approach for reducing the risk of recurrence in patients
with GC [6, 7]. Chemotherapy can directly kill tumor cells or increase
their susceptibility to immune effects, thereby enhancing tumoricidal
activity [8, 9]; however, chemoresistance limits its clinical application.

Chemoresistance arises through clonal evolution of tumor cells, with
multiple cell populations derived from initial tumor-initiating cells
known as cancer stem cells (CSCs) [10]. Research by Pan et al. [11]
indicated that CSCs are more resistant to chemotherapy than non-
CSCs, and may result in cancer metastasis. In recent years,
immunotherapy has shown significant antitumor effects in the
treatment of various solid tumors. Immunotherapy enhances
the antitumor effects of the immune system by reactivating the
suppressed immune microenvironment, and has become a first-line
treatment for certain tumors [12, 13]. However, the response rate of
GC to immunotherapy is low, which may be related to the presence
of stem cells within the tumor [14]. CSCs promote tumor-associated
immune and stromal cells to adopt a pro-tumorigenic phenotype
through paracrine and juxtacrine signaling, leading to resistance to
immunotherapy [15].
Phospholysine phosphohistidine inorganic pyrophosphatase

(LHPP), a histidine phosphatase, plays a broad role in protein and
cellular functions, including cell cycle regulation, phagocytosis, and
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modulation of ion channel activity, among others [16, 17]. It is widely
expressed in various cancer tissues [18] and exhibits tumor-
suppressive effects in multiple cancers, including liver [19, 20], gastric
[21], colorectal [22], and pancreatic [23] cancers. LHPP functions as a
tumor suppressor gene in GC by regulating the PI3K/AKT/mTOR
pathway [24] and inhibiting the Wnt/β-catenin signaling pathway [25],
the TGFβ/Smad signaling pathway [26], AKT phosphorylation [27], and
other mechanisms to suppress tumor occurrence and progression.
Previous studies have shown that low expression of LHPP is
significantly correlated with poor prognosis and chemosensitivity in
patients with GC and that LHPP is a potential predictive biomarker
and therapeutic target for GC [21]. Therefore, this study aimed to
comprehensively investigate the mechanisms of drug resistance in GC
using multi-omics and diverse computational methods, potentially
providing new biomarkers for predicting the prognosis of patients
with GC and personalized treatment plans.

RESULT
Classification and identification of stem cell characteristics
and immune infiltration features in patients with GC
This study collected mRNA transcriptome sequencing data from
375 GC samples sourced from The Cancer Genome Atlas (TCGA)
database. Subsequently, 35 stemness-related gene sets were
identified using the StemChecker tool (http://
stemchecker.sysbiolab.eu/) and the Gene Ontology (GO) Con-
sortium (Fig. 1A). To characterize the stem cell-like properties of
The Cancer Genome Atlas Stomach Adenocarcinoma cohort,
single-sample gene set enrichment analysis (ssGSEA) was
employed to quantitatively analyze the enrichment of 35
stemness-related gene sets (Fig. 1A). Subsequently, an unsuper-
vised consensus clustering algorithm was used to classify the
patients with stomach adenocarcinoma (STAD) into two distinct
immune subgroups (Fig. S1A). Based on the varying stemness
enrichment scores calculated using ssGSEA, we defined these
subgroups as ‘High Stemness’ and ‘Low Stemness’. The mRNAsi
scores showed a significant disparity between the two stemness
groups (Fig. S1B). By including the differentially expressed genes
significantly over-expressed in the ‘High Stemness’ group, GO
enrichment analysis found that, in addition to significant
enrichment of stemness-related pathways, a range of negative
immune regulation pathways were also enriched in this group
(Fig. 1C). SsGSEA indicated significant differences in the composi-
tion of the tumor immune microenvironment between different
levels of stemness (Fig. S1C). In light of the association between
stem cell-like characteristics in GC and the tumor immune
microenvironment, we further assessed the abundance of
immune cell infiltration in GC using the MCPcounter, QuanTIseq,
TIMER, and Xcell tools (Fig. 1D). Using an unsupervised consensus
clustering algorithm, we classified patients with STAD into
‘High Immune Subtype’ and ‘Low Immune Subtype’ groups
(Figs. 1D and S2A). The reliability of the immune classification in
distinguishing patients with differing levels of immune response
was further validated through ssGSEA and GO enrichment
analyses of genes overexpressed in the ‘High Immune Subtype’
group (Fig. 1E, F). Similarly, we observed distinct enrichment
patterns of stemness pathways in the two immune groups,
suggesting a robust correlation between stemness and immune
characteristics of GC (Figs. S2B and S3A). In addition, we included
an analysis of the GEO GC database (GSE15459) and sequencing
data from our center to classify and identify GC stem cell
characteristics and immune infiltration features, validating the
results found in the TCGA database (Figs. S3 and S4).

Development of a stem-immune risk score associated with
neoadjuvant therapy
To investigate the combined effects of tumor stemness and
immune characteristics in patients with GC undergoing

neoadjuvant therapy, we collected transcriptome sequencing data
from 141 postoperative specimens from patients with GC treated
with neoadjuvant therapy at our center. Following neoadjuvant
therapy, the tumor regression grade (TRG) of these patients was
assessed by pathological evaluation (Fig. S5B). TRG 0 and TRG 1
stages were defined as responders to neoadjuvant chemotherapy,
whereas TRG 2 and TRG 3 stages were classified as non-responders.
Subsequently, we identified overlapping differentially expressed
genes between stemness and immune characteristics and per-
formed Weighted Gene Co-Expression Network Analysis on these
genes, representing the shared features of both traits
(Figs. 1G, H and S6A–C). The clinical information of the included
neoadjuvant therapy samples included responses to neoadjuvant
chemotherapy; T, N, and M staging; and AJCC stage (Fig. 1H). Seven
gene modules were identified and their relevant characteristics
were visualized (Fig. 1H). Notably, eigengenes in the brown module
(MEbrown) were significantly associated with neoadjuvant che-
motherapy (NAC) benefits (Fig. 1H). Further functional enrichment
analysis revealed significant enrichment of pathways such as PD-L1
expression, PD-1 checkpoint pathway in cancer, Wnt signaling
pathway, and T cell receptor signaling pathway in the Brown
Module. This suggests that these pathways are likely involved in the
critical interaction between stemness and immunity in NAC
resistance (Fig. S6D).
We selected key genes from the Brown Module and constructed

a stem cell-immune risk score using the Least Absolute Shrinkage
and Selection Operator algorithm (Fig. 2A). The optimal model
included four genes that were significantly associated with risk
score (LHPP, PSMA7, TCOF1, and PRPF3). Based on this model,
patients with TCGA GC were stratified into high- and low-risk
groups, with the high-risk group showing a significant association
with poorer overall survival (p < 0.001, based on the optimal cutoff
value of 1.07). Figure 2D shows the robust predictive power of the
risk score for the prognosis of patients with GC in TCGA cohort. A
nomogram incorporating seven readily available clinical features
was developed to guide individualized management of patients
with GC (Fig. 2E). In univariate Cox regression analysis, the stem
immune risk score was identified as an independent prognostic
factor for patients with GC (Fig. 2F). Additionally, we incorporated
transcriptome sequencing data from the GSE15459 GC cohort for
validation, where we similarly confirmed the prognostic value of
the stem cell immune risk score (Fig. 2G–J). Tables S1 and S2
present the relationship between risk scores and baseline
characteristics in the two cohorts.
In summary, we identified four key molecules related to the

combination of tumor stemness and immune characteristics in
neoadjuvant-treated GC, and demonstrated the prognostic value
of the risk model they constitute in predicting outcomes for
patients with GC post-surgery. Furthermore, we explored the
predictive role of this risk model in determining the benefits of
neoadjuvant therapy and its involvement in stemness, immune
landscapes, and multi-omics events.

Stemness, immune landscape and multi-omics events of stem-
immune risk score
Using the pRRophetic and oncoPredict drug resistance prediction
algorithms, we found that patients with a low stem cell-immune
risk score exhibited a significantly better response to various
clinical chemotherapeutic agents, as well as increased drug
sensitivity to AKT inhibitors and Wnt-C59 (Fig. 3A, B). These
results suggested that the stem cell-immune risk score may reflect
the pivotal role of the Akt/Wnt/β-catenin signaling pathway in
mediating chemotherapy resistance in GC, similar to the enrich-
ment of the ‘Wnt signaling pathway’ observed in Fig. S6D. Given
the previously demonstrated prognostic value of the stem cell-
immune risk score in predicting postoperative outcomes in
patients with GC who did not receive neoadjuvant chemotherapy,
we aimed to explore the predictive potential of this risk model in
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assessing the benefit of neoadjuvant therapy. The tumor immune
dysfunction and exclusion (TIDE) algorithm was used to evaluate
the likelihood of tumor immune escape based on the gene
expression profiles of the tumor samples. We selected patients
with GC from the TCGA cohort who had received adjuvant
chemotherapy and calculated their TIDE scores. A higher TIDE
score for each patient indicated a greater likelihood of tumor

immune escape (Fig. S7A, B). The analysis revealed a significantly
higher proportion of patients with low TIDE scores in the low-risk
group, whereas the high-risk group contained a greater number of
patients with elevated TIDE scores (Fisher’s exact test, p= 0.0117;
Figs. 3C and S7A). Transcriptome sequencing data from 141
patients with GC who received NAC at our center validated these
findings, showing that the low-risk group was associated with a
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lower likelihood of tumor immune escape (Fisher’s exact test,
p < 0.001; Figs. 3D and S7B). Furthermore, we performed a
stratified analysis of patients from our center database based on
TRG grading and risk scores. The analysis revealed that patients in
the TRG 0/1 group had significantly lower risk scores (p < 0.001,
Fig. 3E), while patients with GC in the low-risk group demon-
strated a significantly greater benefit from NAC (TRG 0/1 vs. 2/3:
p < 0.001; chi-square test: p < 0.001, Fig. 3F). In the ssGSEA of
stemness and immunity, the high-risk group was associated with a
greater enrichment of stemness pathways and a lower enrichment
of anti-tumor immune response cells (Fig. 3G, H). In both the TCGA
and GSE15459 cohorts, HALLMARK and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses consistently
demonstrated that a higher risk score was associated with the
enrichment of pathways such as oxidative phosphorylation, AKT
signaling, WNT signaling, and metabolic processes (Fig. S7C, D).
These findings suggest that the Akt/Wnt/β-catenin and
metabolism-related pathways may serve as key mediators of
stemness-immune responses contributing to NAC resistance.
To further construct the multi-omics landscape of the risk score,

we utilized the ‘maftools’ R package to compare the distribution
and frequency of somatic copy number alterations between the
high- and low-risk groups. The analysis revealed a significantly
higher mutational burden of ARID1A in the high-risk group than
that in the low-risk group (Fig. S8A). ARID1A has previously been
reported to be associated with enhanced cancer stemness
characteristics and tumor immune evasion when mutated. No
significant differences were observed between the high- and low-
risk groups in terms of variant classification or type (Fig. S8B, C). In
the analysis of copy number variations (Fig. S9A–D), we observed
a significantly higher frequency of copy number loss for LHPP, one
of the key genes in the high-risk group, located at 10q26.3 (Fig.
S9D). Given that LHPP showed the strongest correlation with the
risk score (−0.84, Fig. 3I), it is highly likely that LHPP (phospho-
lysine phosphohistidine inorganic pyrophosphate phosphatase) is
a key gene mediating the response to neoadjuvant chemother-
apy. Given the pivotal role of LHPP in the risk score, further
research on its function within the tumor immune microenviron-
ment and cancer cell stemness characteristics is of critical
importance.

LHPP regulates anti-tumor immune cell infiltration within the
tumor microenvironment
Using the CIBERSORT, ESTIMATE, MCPCounter, quanTIseq, and
TIMER algorithms, we calculated the immune cell infiltration levels
in TCGA patients with GC. The analysis revealed a significant
positive correlation between LHPP mRNA expression and the
infiltration of various antitumor immune cells (Figs. 3J and S10A).
KEGG and HALLMARK enrichment analyses of neoadjuvant
sequencing data from our center indicated that low LHPP
expression was associated with the enrichment of anti-tumor
immune response pathways, including the PI3K-AKT-mTOR, JAK-
STAT, and WNT-β-catenin signaling pathways (Fig. 3K, L). In both
TCGA and GSE15459 cohorts, GO and KEGG enrichment analyses

revealed the importance of LHPP in tumors through the PI3K-Akt
signaling pathway. LHPP was also enriched in biological processes
related to extracellular matrix remodeling, immune cell activation,
and chemotaxis (Fig. S10B–E).
Additionally, we performed single-cell sequencing of post-

operative specimens from ten patients in our center who received
neoadjuvant therapy at our center. These included five patients
who responded to the therapy (two with TRG 0 and three with TRG
1) and five patients who were resistant to the therapy (three with
TRG 3 and two with TRG 2) (Fig. 4A). Based on the marker genes of
each cluster, the cells were annotated into the following groups: T
and NK cells, epithelial cells, myeloid cells, B cells, plasma cells,
fibroblasts, endothelial cells, smooth muscle cells, mast cells,
proliferative cells, and endocrine cells (Fig. 4A, B). We further
subdivided T and NK cells, myeloid cells, and epithelial cells based
on their respective cluster markers (Figs. S11A–F and 4C). In the
annotation and clustering of GC epithelial cells, we found that LHPP
was widely expressed across various GC epithelial cell subpopula-
tions, with the highest expression observed in pit mucous cells
(Fig. S12A, B). In the annotation and clustering of GC epithelial cells,
LHPP was broadly expressed across various epithelial cell
subpopulations, with the highest expression observed in pit
mucous cells. To study the communication between LHPP in
epithelial cells and immune cells in the tumor microenvironment,
epithelial cells were divided into two groups based on the median
expression level of LHPP: LHPPhigh epithelial cells and LHPPlow

epithelial cells (Fig. S12C–E). T cell, myeloid, and epithelial cell
subpopulations were included, and CellChat was used to analyze
intercellular communication (Fig. 4D). Cellular communication
analysis revealed stronger interactions between LHPPhigh epithelial
cells and CD8+ effector T cells, whereas LHPPlow epithelial cells
showed stronger interactions with CD8+ exhausted T cells. This
suggests that LHPPhigh epithelial cells play a critical role in the
regulation of antitumor immune responses. Furthermore, we
visualized the communication networks of MHC class I and II
signals between epithelial cells with different LHPP expression
levels and immune cells. The analysis indicated that LHPPlow

epithelial cells primarily communicated with CD8+ exhausted
T cells via the MHC class I signaling pathway, whereas LHPPhigh

epithelial cells predominantly interacted with CD8+ effector T cells
via the same pathway (Fig. S13A). There were no significant
differences in cellular communication between the two groups via
the MHC class II signaling pathway (Fig. S13B). The bubble plot
illustrates the differences in signaling communication between
epithelial cells with varying LHPP expression levels, CD8+ effector
T cells, and CD8+ exhausted T cells (Fig. 4F). As single-cell samples
included data on NAC responses, we performed a comparative
analysis of cellular communication between samples that
responded and those that did not. Enhanced cellular communica-
tion signals in the responder group are represented by blue lines,
whereas those in the non-responder group are indicated by red
lines (Fig. S13C, D). Figure S13D shows that, in the NAC-responsive
group, communication between LHPPhigh epithelial cells and CD8+
effector T cells was significantly enhanced (blue lines), whereas

Fig. 1 Integrative analysis of stemness and immune characteristics in the transcriptome of gastric cancer patients. A The integrated
heatmap illustrates the stemness pathway scores for each patient across the two stemness phenotypes. B Student’s t test was used to evaluate
the differences in stemness pathway scores between the two stemness subgroups. The upper and lower edges of the box represent the
interquartile range, the line within the box denotes the median, and the dots indicate outliers. C GO enrichment analysis illustrated the
pathway enrichment profiles within the two stemness subgroups. D The integrated heatmap displays the immune cell infiltration profiles for
each patient across the two immune phenotypes. E Student’s t test was used to assess differences in immune cell infiltration between the two
immune subgroups. The upper and lower edges of the box represent the interquartile range, the line within the box indicates the median,
and the dots denote outliers. F GO enrichment analysis revealed pathway enrichment profiles across the two immune subgroups. G Venn
diagram illustrates the overlap between differentially expressed genes associated with the stemness subgroups and those associated with the
immune subgroups. The intersecting differentially expressed genes were further analyzed using Weighted Gene Co-Expression Network
Analysis (WGCNA). H The Module–Trait Relationships diagram illustrates the correlations between different modules and the clinical
information of neoadjuvant-treated patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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communication between LHPPlow epithelial cells and CD8+
exhausted T cells was notably increased (red lines). Further
visualization of MHC class I signaling pathways revealed differences
in cellular communication between the responder and non-
responder groups. In the non-responder group, LHPPlow epithelial
cells exhibited strong signaling communication with CD8+
exhausted T cells via the MHC class I pathway, whereas in the
responder group, LHPPhigh epithelial cells showed stronger
communication with CD8+ effector T cells through the same
pathway (Fig. S13E, F).
These findings suggest that high LHPP expression in GC

regulates CD8+ effector T cell infiltration and function, thereby
modulating the immune landscape of the tumor microenviron-
ment and mediating the sensitivity of GC cells to neoadjuvant
chemotherapy.

Loss of LHPP in gastric adenocarcinoma drives stem cell-like
characteristics via GSK3β phosphorylation
Epithelial cells were classified into CD44high and CD44low based on
the median expression level of CD44 (Fig. S12G, I). The expression
distribution of LHPP and CD44 in epithelial cells exhibited a
mutually exclusive relationship (Fig. S12F, J) with a clear negative
correlation between their expression levels (Fig. 4J). In epithelial
cells with low LHPP expression, CD44 expression was significantly
elevated (Fig. 4K). Epithelial cells were grouped based on LHPP
and CD44 expression levels, resulting in four subgroups: LHPPlow

CD44high epithelial cells, LHPPhigh CD44low epithelial cells, LHPPlow

CD44low epithelial cells, and LHPPhigh CD44high epithelial cells
(Fig. 4G). Analysis of the cellular communication between these
four epithelial subgroups and CD4+ and CD8+ T cells revealed
that LHPPlow CD44high epithelial cells exhibited the strongest
communication with CD8+ exhausted T cells, whereas LHPPhigh

CD44low epithelial cells showed the strongest communication with
CD8+ effector T cells (Fig. 4G, H). Differences in cellular
communication with CD8+ T cells were observed among the
four groups in the MHC class I signaling pathway. LHPPhigh CD44low

epithelial cells exhibited greater communication with CD8+
effector T cells through the MHC class I pathway than LHPPlow

CD44high epithelial cells did (Fig. 4I).
In summary, epithelial cell subgroups with different LHPP and

CD44 expression levels exhibited significant differences in
communication with CD8+ T cells. LHPP and CD44 expression
levels significantly influence the communication patterns between
epithelial and immune cells. We performed further experiments to
validate the role of LHPP in promoting the stem cell-like
characteristics of GC cells. Based on the expression levels of LHPP
in different GC cell lines, we established LHPP-overexpressing AGS
GC cells and LHPP-knockdown MKN45 GC cells (Fig. 5A, B). Low
LHPP expression led to a significant increase in the protein levels
of stemness markers, such as CD44, NANOG, SOX2, and SOX9 in GC
cell lines, whereas high LHPP expression suppressed the expres-
sion of these stemness markers (Fig. 5C). The 3D spheroid

Fig. 2 Establishment of the stem-immune risk score and its prognostic value in gastric cancer patients. A The optimal lambda and
corresponding coefficients for the four indicators were determined using Least Absolute Shrinkage and Selection Operator (LASSO)
regression. B The stepwise multivariable Cox proportional hazards regression model was applied to generate a risk score for each gastric
cancer patient in the TCGA cohort, with patients classified based on the median risk score. C Kaplan–Meier survival analysis illustrates the
relationship between the risk score and clinical prognosis of gastric cancer patients in the TCGA cohort. The grouping of risk score is based on
the optimal cutoff value of 1.07. D Time-dependent calibration curves confirmed the accuracy of the risk model in predicting the prognosis of
gastric cancer patients in the TCGA cohort. E The nomogram-based Cox regression model was constructed to develop a composite score
incorporating the risk score, gender, age, and TNM stage for patients in the TCGA cohort. F The forest plot displays the hazard ratios from
univariate Cox regression analyses for the risk score, gender, age, and TNM stage in the TCGA cohort. G The stepwise multivariable Cox
proportional hazards regression model was applied to generate a risk score for each gastric cancer patient in the GSE15459 cohort, with
patients classified based on the median risk score. H Kaplan–Meier survival analysis illustrates the relationship between the risk score and
clinical prognosis of gastric cancer patients in the GSE15459 cohort. The grouping of risk score is based on the optimal cutoff value of −7.30.
I Time-dependent calibration curves confirmed the accuracy of the risk model in predicting the prognosis of gastric cancer patients in the
GSE15459 cohort. J The forest plot displays the hazard ratios from univariate Cox regression analyses for the risk score, gender, age, and TNM
stage in the GSE15459 cohort. *p < 0.05; **p < 0.01; ***p < 0.001.
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formation assay demonstrated that LHPP overexpression reduced
the spheroid-forming ability of AGS cells (Fig. 5D) and significantly
decreased CD44 expression (Fig. S14A). Conversely, LHPP knock-
down enhanced the spheroid-forming capacity of MKN45 cells
(Fig. 5E), which was accompanied by a significant increase in CD44

expression (Fig. S14A). Flow cytometry analysis showed that high
LHPP expression significantly reduced the proportion of CD44-
positive GC cells, whereas low LHPP expression markedly
increased the proportion of CD44-positive cells (Fig. S14B, C).
Limiting dilution assays revealed that the spheroid-forming
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capacity of LHPP-knockdown cells increased from 1/4.02–1/1.97 to
1/1.98–1/1.22 (AGS cells, p= 0.0012, Fig. S14D). In contrast, the
spheroid-forming ability of LHPP-overexpressing cells decreased
from 1/3.41–1/1.69 to 1/5.26–1/2.62 (MKN45 cells, p= 0.0279, Fig.
S14E). Organoid experiments derived from patients with GC
demonstrated that the diameter of organoids transfected with the
LHPP-overexpressing virus was significantly reduced, whereas
those transfected with the LHPP-knockdown virus exhibited a
marked increase in diameter (Fig. 5F). Fluorescence staining of
organoids revealed that high LHPP expression significantly
inhibited organoid size and the proportion of CD44-positive cells,
whereas low LHPP expression had the opposite effect
(Figs. 5G and S14F). To further elucidate the pathways through
which LHPP influences stem cell-like characteristics, we used a
human phosphokinase array kit to identify the phosphorylation
kinases that are closely associated with LHPP (Fig. 5H). The results
indicated differential expression levels of several phosphorylated
protein kinases between control cells and cells with low LHPP
expression, with significant changes in phosphorylated GSK-3β
(Fig. 5H). We hypothesized that low LHPP expression in GC cells
mediates stem cell-like characteristics via GSK-3β phosphorylation.
The addition of a phosphorylated GSK-3β inhibitor significantly
reversed the enhanced spheroid formation ability in LHPP low-
expression cells and stem cell-like characteristics observed in
human organoids (Fig. 5I, J). Additionally, western blotting
confirmed that the phosphorylated GSK-3β inhibitor restored
the elevated expression of CD44, NANOG, SOX2, and SOX9 in
human organoids with low LHPP expression (Fig. 5K). Conversely, a
phosphorylated GSK-3β activator reversed the reduced spheroid
formation ability observed in LHPP high-expressing cells (Fig.
S14G). Subcutaneous injection of LHPP-overexpressing, LHPP-
knockdown, and the corresponding control cell lines was
performed in nude mice, and tumor formation rates and numbers
were recorded. Compared to the control group, LHPP-over-
expressing AGS GC cells showed a statistically significant
reduction in the tumor formation rate and number (Fig. 6A), as
well as a decrease in tumor weight and volume (Fig. 6C).
Conversely, LHPP-knockdown MKN45 GC cells exhibited a
statistically significant increase in tumor formation rate and
number (Fig. 6B), along with increased tumor weight and volume,
compared to the control group (Fig. 6D). To verify whether Lhpp
similarly regulates tumor growth and stemness characteristics in
wild-type background mice, we collected four mouse GC cell lines:
YTN2, YTN3, YTN5, and YTN16. Based on the expression levels of
Lhpp in the four mouse GC cell lines, we constructed Lhpp-
overexpressing YTN5 mouse GC cells and Lhpp-knockdown YTN3
mouse GC cells (Fig. S15A). The tumor formation rate and number
of YTN5 GC cells overexpressing Lhpp in C57BL/6 mice were
significantly lower than those in the control group, with reduced
tumor weight and volume (Fig. S15B, D). In contrast, the tumor
formation rate, quantity, tumor weight, and volume of Lhpp-

knockdown YTN3 GC cells were increased (Fig. S15C, E). These
findings suggest that LHPP significantly inhibits robust tumor
growth and stem cell-like characteristics in vivo. To investigate the
effect of LHPP on chemoresistance of GC cells, we added
oxaliplatin (OXA) to human GC organoids (Fig. 6E). Following
OXA treatment, organoids overexpressing LHPP exhibited a
significant reduction in size and survival rate compared to the
control group (Fig. 6F). OXA was then added to the GC cell lines
with either LHPP overexpression or knockdown at 50% confluence.
Flow cytometry analysis showed that LHPP overexpression
significantly increased the apoptotic rate of GC cells under OXA
treatment, whereas LHPP knockdown had the opposite effect
(Fig. 6G).

Validation of LHPP expression in mouse tumor models and
clinical samples
We used the Mist-CreERT;Apcfl/fl;p53fl/fl;Rosa26Tdtomato conditional
knockout gene mouse model (Figs. 7A, and S16A, B), with the
corresponding genetic mouse induction model shown in Fig. 7B.
Mouse tumors are presented with HE staining to ensure they are
all mouse cancer samples. As shown in Fig. 7A, we used this model
to compare the expression and distribution of Lhpp, Cd44, and CD8
in GC. We observed that Cd44 expression was significantly
increased in areas with low Lhpp expression, and there was an
exclusion between the localization of Cd44 and Lhpp
(Figs. 7A and S16A, B). Furthermore, areas with low Lhpp
expression were accompanied by a reduction in the infiltration
of CD8+ T cells within the tumor. In contrast, with high Lhpp
expression, Cd44 expression significantly decreased, and CD8+ T
cell infiltration into the tumor was significantly enhanced (Figs.
7A and S16A, B). We further supported the negative correlation
between Lhpp and Cd44, as well as the positive correlation
between Lhpp and CD8 infiltration, through statistical analysis of
multiple regions across several mice (Fig. 7C, D).
Immunohistochemistry (IHC) was performed to assess the

expression of LHPP and CD44 in postoperative specimens from
patients with GC (Fig. S17A). In patients with GC, high LHPP
expression was significantly associated with a favorable prog-
nosis, whereas high CD44 expression was correlated with a
poorer prognosis (Figs. 7E, F and S18B, C). LHPP expression was
significantly and negatively correlated with CD44 expression
(Fig. S17A, B). Combined analysis of LHPP and CD44 expression
revealed that high LHPP expression was significantly associated
with better survival prognosis, particularly in the context of low
CD44 expression. Conversely, low LHPP and high CD44 expres-
sion were significantly correlated with poor survival prognosis
(p < 0.001). These findings suggest that the expression status of
LHPP and CD44 may serve as independent or combined
biomarkers for predicting patient survival (Figs. 7G and S18D).
Furthermore, we investigated changes in immune cell composi-
tion within the tumor microenvironment mediated by LHPP in

Fig. 3 Comprehensive correlation analysis of the risk score with drug resistance, immunity, and stemness. A, B Using the R packages
‘pRRophetic’ and ‘oncoPredict,’ we estimated the IC50 values for commonly used chemotherapeutic drugs in gastric cancer patients from
TCGA database. The upper and lower edges of the box represent the interquartile range, the line within the box indicates the median, and the
dots denote outliers. Student’s t test was used to compare the statistical difference between the two groups. C Fisher’s exact test was used to
compare the proportions of TIDE scores between high and low risk groups in the TCGA cohort. D Fisher’s exact test was used to compare the
proportions of TIDE scores between high and low risk groups in the neoadjuvant therapy cohort from our center. E A Student’s t test was
conducted to compare the differences in risk scores between TRG 0/1 and TRG 2/3 groups in the neoadjuvant therapy cohort from our center.
F The proportions of TRG grades across different risk groups were compared within the neoadjuvant therapy cohort from our center. G, H The
ssGSEA algorithm was used to compare stemness pathway enrichment scores and immune cell infiltration scores between the high and low
risk groups. Student’s t test was used to compare the statistical difference between the two groups. I Scatter plots illustrate the correlations
among LHPP, PSMA7, TOCF1, PRPF3, the risk score, and mRNAsi. All correlation analyses were performed using Pearson’s correlation coefficient
for statistical analysis. J Scatter plots depict the correlation between LHPP expression and immune cell infiltration levels across various
algorithms. All correlation analyses were performed using Pearson’s correlation coefficient for statistical analysis. K, L GSVA enrichment
analysis demonstrated the pathway enrichment profiles of KEGG and HALLMARK pathways across different levels of LHPP expression.
*p < 0.05; **p < 0.01; ***p < 0.001.
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clinical samples. We classified the patients into three immune
groups: ‘inflamed,’ ‘excluded,’ and ‘desert’. IHC was used to
assess CD8+ immune cell expression in the tumor center and
invasive margins across these groups, thereby validating
immune cell infiltration patterns (Fig. 7H). The analysis revealed
significant differences in LHPP expression among the three
immune groups, with notably higher LHPP expression in the
inflamed group (Fig. 7I). We quantitatively assessed the
infiltration of various tumor immune cells in the tumor center
and invasive margins, including CD45+ leukocytes, CD3+ and
CD8+ cytotoxic T cells, CD4+ helper T cells, CD45RO+ activated
and memory T cells, and FOXP3+ regulatory T cells (Fig.
S17C–T). Overall, high LHPP expression was significantly
associated with altered tumor immune infiltration characteris-
tics, showing a positive correlation with the infiltration
abundance of CD3+ (Fig. S17C–E), CD4+ (Fig. S17F–H), CD45+

T cells (Fig. S17I–K), and CD8+ (Fig. S17R–T), in both the center
of the tumor and the invasive margin.
In summary, high LHPP expression is significantly associated

with a favorable prognosis and enhanced antitumor immune
microenvironment in patients with GC, particularly marked by
increased infiltration of CD8+ cytotoxic T cells and other T cell
subsets. These findings suggest that LHPP may serve as a
biomarker for predicting survival outcomes and immune status
in patients with GC.

DISCUSSION
Tumorigenicity and immune evasion are closely related, and their
interaction may lead to the reduced efficacy of immunotherapy.
GC cells with high PD-L1 expression may be more inclined to
evade the immune system, thereby promoting tumor progression
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and worsening prognosis [28]. Additionally, the tumor microenvir-
onment plays a significant role in tumorigenicity and immune
evasion, with tumorigenic signaling activating immunosuppres-
sive programs that underlie the immune evasion of tumor cells
[29]. Consequently, patients with GC in the high tumorigenicity/
low immune groups may have a poor prognosis owing to the
strong invasiveness, metastatic ability, and immune evasion
capabilities of tumor cells. Our study indicated that high LHPP
expression is closely associated with significant infiltration of
antitumor immune cells and suppression of stemness character-
istics, suggesting its role as a potential tumor suppressor
gene in GC.
Tumorigenicity and immune evasion are key factors in

chemoresistance in GC. Our multi-omics analysis further demon-
strated that LHPP inhibits the stemness characteristics of GC cells
and weakens their drug resistance by regulating the phosphoryla-
tion pathway of GSK-3β. LHPP is a highly conserved histidine
phosphatase that functions as a tumor suppressor in various
cancers. LHPP can inhibit the proliferation, growth, and migration
of tumor cells and promote apoptosis by participating in the
regulation of various cellular signaling pathways and protein
phosphorylation [23, 30]. LHPP expression is reduced in GC and its
expression level is closely related to patient prognosis. Low LHPP
expression is associated with poor prognosis in GC, indicating that
LHPP may serve as a potential prognostic biomarker for patients
with GC [21]. Our study showed that LHPP plays an important role
in inhibiting tumorigenicity and enhancing drug response, a
finding that is consistent with that of other studies. Upregulation
of LHPP may reduce cell stemness by inhibiting the activation of
JNK and p38 MAPK signaling pathways, while enhancing the
accumulation of intracellular reactive oxygen species, thereby
promoting cisplatin-induced apoptosis in GC cells and increasing
sensitivity to cisplatin [31]. Additionally, LHPP can regulate the
chemoresistance of GC cells through specific signaling pathways,
such as PI3K-AKT [24] and Wnt-β-catenin [27]. In the PI3K-AKT
signaling pathway, downregulation of LHPP expression is asso-
ciated with chemoresistance in GC cells. Overexpression of LHPP
can lead to reduced phosphorylation of the PI3K/AKT/mTOR
pathway, whereas depletion of LHPP has the opposite effect [24].
LHPP may enhance the sensitivity of GC cells to chemotherapeutic
drugs by inhibiting the phosphorylation pathway of GSK-3β.
The stemness characteristics of tumor cells are closely related to

their self-renewal and repopulating abilities, which enable them
to resist conventional treatments and make them prone to

recurrence. Furthermore, the Wnt/β-catenin signaling pathway
may enhance the chemoresistance of GC cells by promoting their
stemness characteristics. In colorectal cancer, LHPP inhibits the
migration and invasion of cancer cells by suppressing the
phosphorylation of Smad3 in the TGF-β pathway [26]. Qin et al.
showed that upregulating the expression of LHPP can activate the
immunogenicity of tumor cells and the transition to ferroptosis,
thereby achieving effective treatment of hepatocellular carcinoma
[32]. These studies support the important role of LHPP in the
inhibition of tumorigenicity, and provide potential targets for the
development of new therapeutic strategies.
This study also revealed for the first time a significant

communication relationship between LHPP low-expressing epithe-
lial cell subgroups and CD8+ exhausted T cells, suggesting a
potential mechanism for immune evasion. An increase in CD8+ T
cell infiltration in the tumor microenvironment is associated with
better prognosis, and CD8+ T cells have the ability to selectively
detect and eliminate cancer cells. Numerous studies have shown
that T cell infiltration has an important impact on the efficacy of
immunotherapy [33, 34]. Although immunotherapy has made
significant progress in some tumors in recent years, a considerable
number of patients with GC still do not benefit from immu-
notherapy, which may be related to tumor immune suppression
[35]. Stem cell-like characteristics in the tumor microenvironment
create an environment that allows tumor cells to escape host
immune surveillance, thereby resisting cancer treatment [36–38].
Our study showed that LHPP expression may be related to the
infiltration of immune cells into the tumor microenvironment,
suggesting that LHPP may regulate the immune microenviron-
ment through multiple mechanisms. Zhou et al. found that
oxidative phosphorylation of LHPP is associated with increased
immune infiltration in osteosarcoma [30]. Based on stratified
analysis of LHPP and CD44, we found that gastric epithelial cells
with high LHPP and low CD44 levels exhibited strong signal
communication with CD8+ effector T cells. This indicates that
LHPP plays a key role in regulating the infiltration of antitumor
immune cells, and that changes in its expression and activity may
have a significant impact on the immune evasion of tumors and
the effectiveness of immunotherapy.
CD44 is a transmembrane glycoprotein and its overexpression

in tumor stem cells is associated with the occurrence and
development of tumors [39]. Dysregulation of CD44 expression
is closely associated with tumor proliferation, invasion, metastasis,
and therapeutic resistance [40]. The expression of CD44 in various

Fig. 4 Analysis of LHPP in relation to immunity and stemness in the single-cell data from our center’s neoadjuvant therapy cohort. A The
UMAP plot illustrates the major cell types identified in the single-cell transcriptomic dataset from the neoadjuvant therapy cohort at our
centre, including T & NK cells, epithelial cells, myeloid cells, B cells, plasma cells, fibroblasts, endothelial cells, smooth muscle cells, proliferative
cells, mast cells, and endocrine cells. B Dot plot showing the average expression and percentage of specific markers across different cell types,
highlighting cell-type-specific marker genes. The color intensity represents average expression levels, and the dot size indicates the
percentage of cells expressing each marker. C The UMAP plot displays the subpopulations identified in the single-cell transcriptomic dataset
from the neoadjuvant therapy cohort at our centre, including B cells, CD4+ naive T cells, CD4+ regulatory T cells, CD8+ effector T cells, CD8+
exhausted T cells, conventional dendritic cells (cDCs), classical monocytes, endocrine cells, endothelial cells, epithelial cells (LHPP High and
LHPP Low), fibroblasts, macrophages, mast cells, mature dendritic cells (MatureDCs), natural killer cells, neutrophils, PD1+ regulatory T cells,
plasmacytoid dendritic cells (pDCs), plasma cells, proliferating T cells, proliferating myeloid progenitors (ProliferatingMPs), proliferative cells,
smooth muscle cells, T helper cells, and type 3 innate lymphoid cells. D Network plot displaying the interaction weights and strengths
between epithelial cell subpopulations and various immune cells, as analyzed by CellChat. E A simplified network diagram focusing on the
signaling interactions between LHPPhigh and LHPPlow epithelial cell subpopulations and immune cells, illustrating distinct communication
patterns. F Dot plot showing the specific interactions between epithelial cell subgroups and immune cells through the MHC-I, MHC-II, and
CXCL signaling pathways. The size of each dot represents the communication probability, and color intensity indicates the p value significance
level. G, H Network plot depicting the MHC-I signaling pathway interactions among epithelial cell subgroups and various CD4+ and CD8+ T
cell subtypes. The thickness of the connections represents the interaction strength, highlighting the elevated communication strength
between LHPPlow CD44high epithelial cells and CD8+ exhausted T cells, as well as between LHPPhigh CD44low epithelial cells and CD8+ effector
T cells. I Dot plot comparing MHC-I pathway-mediated communication with CD8+ T cell subtypes across different LHPP and CD44 expression
subgroups in epithelial cells. Significant variations in communication patterns are evident, particularly highlighting the interactions involving
HLA molecules (HLA-A, HLA-B, HLA-C) and various CD8+ T cell markers. J Scatter plot displaying the correlation between LHPP and CD44
expression across various epithelial cell types, including cancer cells, stem/progenitor cells, and mucus neck cells. K Violin plot illustrating the
differential expression of CD44 in epithelial cells based on LHPP expression levels. *p < 0.05; **p < 0.01; ***p < 0.001.
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solid tumors, such as colorectal cancer [41], lung cancer [42], and
Ewing’s sarcoma [43], differs from that in normal tissues, indicating
its important role in tumorigenesis. CD44 is a promising candidate
for predicting the prognosis of patients with malignant tumors.
Hou et al. [44] found that CD44 is highly expressed in GC tissues
compared with normal tissues and promotes the proliferation and
migration of GC cells. In this study, the overall survival,
progression-free survival, and post-progression survival were
prolonged in the group with low CD44 expression, indicating

that high CD44 expression in GC is an independent prognostic
factor related to immune invasion and is associated with poor
prognosis in GC. Gama et al. [45] found that overexpression of
CD44 in breast cancer and its brain metastasis cohort was
associated with poor overall survival. Jakob et al. [46] and others
found in their research on squamous cell carcinoma of the head
and neck that high expression of CD44 reduced the overall
survival and disease-free survival of patients. Therefore, LHPP and
CD44 expression levels may serve as potential biomarkers for
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predicting the prognosis and immune status of patients with GC.
These findings suggest novel targets for future therapeutic
strategies.
In summary, LHPP plays a key role in the regulation of stemness

characteristics and immune microenvironment in GC and may
provide new biomarkers and therapeutic targets for personalized
treatment of patients with GC. However, this study has certain
limitations, including the sample size and need for further clinical
validation. Future studies should expand the clinical sample size
and explore the specific mechanisms by which LHPP regulates the
immune microenvironment of GC to promote its translational
potential in clinical applications.

METHODS
Patients and gastric tissue samples
A total of 233 paraffin-embedded tumor tissue microarrays (TMAs)
specimens were collected from Fujian Medical University Union Hospital
from January 2013 to October 2015. Tissue samples from 141 GC patients,
who underwent surgical resection following neoadjuvant chemotherapy,
were used for bulk transcriptome sequencing. Tissue samples from 10 GC
patients, who underwent surgical resection following neoadjuvant
chemotherapy, were used for single-cell transcriptome sequencing.
Inclusion criteria were as follows: (1) GC histological identification; (2)
availability of follow-up data and clinicopathological features; (3) TNM
staging of GC tumors was performed according to the 8th edition of the
American Joint Committee on Cancer (AJCC) TNM classification guidelines.
Exclusion criteria were as follows: non-formalin-fixed, paraffin-embedded
tumor specimens at initial diagnosis, including tumor center (CT) and
invasive margin (IM). All procedures performed in studies involving human
subjects were in accordance with the Declaration of Helsinki. All patients
for whom tissue samples were used in this study provided written
informed consent. This study was approved by the Ethics Committee of
Fujian Medical University Union Hospital (Ethics Approval number:
2024QH047). All centers approved the study.

Data collection from public databases
For RNA-seq data from The Cancer Genome Atlas stomach adenocarci-
noma (TCGA), fragments per kilobase per million transcripts (FPKM) were
converted to transcripts per megabase (TPM) values by the R package
“limma”. For microarray data from Affymetrix arrays, we downloaded the
company chip raw “CEL” file, corrected it on raw scale, and employed the
multiarray averaging method through affy and simpleaffy packages to
perform background adjustment and quantile normalization. Taking into
account batch effects between datasets, the combatseq function in the
SVA software package was used to remove batch effects in different
datasets for data normalization.

Evaluation of immunological characteristics of the tumor
microenvironment
We used CIBERSORT, EPIC, MCPcounter, QuanTIseq, TIMER, and Xcell to
calculate the infiltrating abundance of immune cells in GC. The tumor
immune dysfunction score (TIDE) (http://tide.dfci.harvard.edu/login/) was
used to predict the response of patients with GC to immunotherapy.

Identification of differentially expressed RNA
The empirical Bayesian approach of R package “limma” was used to
identify differentially expressed genes (DEGs) for each modification
pattern. An adjusted p value < 0.05 and an absolute fold change >2 were
used as the criteria for the significance of DEGs.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) was performed using the molecular
Signature database (MSigDB) to identify significantly enriched pathways
among different tumor sample groups. A gene set is considered “enriched”
if its enrichment score is positive, the expression level of most members of
the gene set is high and the risk score is also high. Pathways with a false
discovery rate (FDR) adjusted p < 0.05 were considered significantly
enriched.

Analysis of mutation and copy number difference
Waterfall plots of gene mutations and copy number variations in the TCGA-
STAD cohort were plotted using the R package “maftools”. To analyze copy
number, we used the GISTIC 2.0 definition to identify amplified genomes
and missing gene sequences. Copy number gain or loss was determined
by the total number of genes with altered copy number at the lesion and
arm level. Using genpattern website (https://cloud.genepattern.org/)
gistic2 plug-in copy number analysis, and using the hg38 human genome
sequence as the reference set.

Correlation analysis of drug sensitivity
The R package “pRRophetic” and “oncoPredict” was used for prediction,
and the “linearRidge” function in the R package “ridge” was used to
construct a ridge regression model to estimate the IC50 of patients with GC
to commonly used chemotherapy drugs.

Immunohistochemistry and evaluation
Serial sections of FFPE samples were 4 μm in size and mounted on glass
slides for IHC analysis. Sections were deparaffinized with xylene and
rehydrated with alcohol. We blocked endogenous peroxidase by immer-
sing the sections in 3% H2O2 aqueous solution for 10min and then
microwave the sections in 0.01mol/L sodium citrate buffer, pH 6.0, for
10min for antigen recovery. The slides were then washed with phosphate
buffered saline (PBS) and incubated with 10% normal goat serum
(Zhongshan Biotechnology Co., LTD., China) to eliminate nonspecific
reactions. Subsequently, sections were incubated with primary antibodies
overnight at 4 °C. Negative controls were treated in the same way, but the
primary antibody was omitted. After rinsing three times with PBS,
secondary antibodies were diluted, incubated on slides for 30min at
room temperature, and stained with diamine benzidine (DAB) solution.
Finally, the slides were counterstained with heme, dehydrated, and fixed
with cover glass and neutral resin.
For staining of LHPP and CD44, the H-score was quantified using: H-

score= (1 × % weak staining)+ (2 × % medium staining)+ (3 × % strong
staining).
To assess immune cell infiltration, five representative and independent

fields were captured at ×200 magnification at the tumor center (CT) and
the invasive margin (IM), as shown in Fig. 7E. Next, we assisted label
counting using the “Measure” plug-in in the Image-Pro Plus software to

Fig. 5 LHPP inhibited stem cell-like characteristics in gastric cancer cells in vitro. A Basic protein expression of LHPP in gastric cancer cell
lines was detected by western blotting. B Stable LHPP-overexpressing AGS cells and LHPP-knockdown MKN45 cells were constructed. Western
blotting confirmed the changes in LHPP expression. C Western blot analysis was used to detect the protein expression levels of CD44, NANOG,
SOX2, and SOX9 in gastric cancer cells with LHPP knockdown or overexpression. D Immunofluorescence imaging shows the expression of LHPP
and CD44 in AGS cells overexpressing LHPP. E Immunofluorescence imaging shows the expression of LHPP and CD44 in LHPP-knockdown
MKN45 cells. F The impact of LHPP overexpression or knockdown on the growth of patient-derived gastric cancer organoids. Organoid
diameters were quantitatively analyzed, and a Student’s t test was used to compare the differences between the two groups.
G Immunofluorescence imaging shows the expression of LHPP and CD44 in patient-derived gastric cancer organoids with LHPP overexpression
or knockdown. H Human phospho-kinase microarray analysis of conditioned medium from MKN45 cells with stable LHPP knockdown. The
relative signal intensities of the indicated proteins are summarized below. I Spheroid formation was assessed in MKN45 cells transfected with
shLHPP and treated with the GSK-3β inhibitor Laduviglusib (CHIR-99021; 10 µM). Student’s t test was used to compare the differences between
the two groups. J Organoid size was assessed in patient-derived organoids transfected with LHPP knockdown and treated with the GSK-3β
inhibitor Laduviglusib (CHIR-99021; 10 µM). Student’s t test was used to compare the differences between the two groups. K Western blot
analysis was used to detect the protein expression levels of CD44, NANOG, SOX2, and SOX9 in patient-derived organoids transfected with LHPP
knockdown or treated with the GSK-3β inhibitor. *p < 0.05; **p < 0.01; ***p < 0.001.
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obtain the number of positive cells in the field. The average number of
positive cells in the five field areas was divided by the field area (0.27 mm2)
to obtain the infiltration density of immune cells in CT and IM. The
percentage/number of all positive cells is expressed as the mean of five
randomly selected microscopy fields.
Inflammation, exclusion, and desert phenotypes were determined based

on immunocytochemical staining slides for CD8+, and the three
immunophenotypes were classified based on features reported in previous
studies, as shown in Fig. 7E.

Information and concentrations of reagents used for IHC are provided
below: LHPP (15759-1-AP, Proteintech, 1:500), CD44 (ET1609-74, HUABIO,
1:1000), CD4 (ET1609-52, HUABIO, 1:800), CD45 (ET7111-03, HUABIO,
1:1000), CD3 (HA720082, HUABIO, 1:1000), CD8 (ET1606-31, HUABIO,
1:200), CD45RO (ab23, Abcam, 1:800), FOXP3 (ET1702-12, HUABIO, 1:200).
The IHC results were evaluated by two independent gastroenterology

pathologists who were blinded to the clinical prognosis of the patients.
Approximately 90% of the scoring results were the same. When the scores
of the two independent pathologists diverged, another pathologist
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checked the results again and selected one of the scores proposed by the
first two doctors, or the three pathologists discussed the decision together.

Preparation and processing of single-cell RNA
sequencing data
Single-cell gel bead emulsions were generated from single-cell suspen-
sions using a 10×Genomics Chromium Controller. cDNA was obtained from
mRNA by dribble and amplified by reverse transcription reaction according
to the manufacturer’s instructions. Te 10× libraries were sequenced on a
NovaSeq sequencing platform (Illumina, San Diego, CA). CellRanger
(version 4.0.0) was used to obtain fastq files of the raw data and annotated
with the human genome reference sequence (GRCh38). Gene barcoding
matrices were then obtained following the Seurat (version 4.0.4) pipeline in
R software (version 4.0.5, R-Foundation, Vienna, Austria). Cells with a
detected gene number below 250 or above 4000, or a high ratio of
mitochondrial transcripts (more than 20%), were not included in the
analysis. Following normalization and scaling, the harmony algorithm was
used to remove batch effects between patients. The top 2000 highly
variable genes were selected for principal component analysis (PCA)
method and the top 20 principal components (PCs) were used for cluster
analysis. To identify differentially expressed marker genes for each cell
type, the FindAllMarkers function in Seurat was used under default
parameters. Marker genes were selected as those with adjusted p values
less than 0.05, average logFC larger than 1, and percentage of cells with
expression higher than 0.25.

Markov Affinity-based Graph Imputation of Cells (MAGIC) for
denoising and imputing single-cell RNA sequencing data
Markov Affinity-based Graph Imputation of Cells (MAGIC) is a denoising
algorithm for high-dimensional data, widely used in single-cell RNA
sequencing [47]. In this study, MAGIC was applied to remove technical
noise from single-cell RNA sequencing data and restore the underlying
biological structure. First, the data was normalized by dividing the gene
expression of each cell by the total expression and applying a logarithmic
transformation. MAGIC then constructs a similarity graph between cells,
calculates the similarity in gene expression patterns, and selects the top K
nearest cells as neighbors, using a Gaussian kernel function to compute
the similarity. Next, MAGIC uses a Markov chain to smooth the graph by
iteratively updating the gene expression values of the cells, allowing them
to be influenced by the expression values of their neighbors, thereby
reducing noise and imputing missing data. In our analysis, we used 7586
epithelial cells, set K= 10 to determine the 10 most similar neighbors for
each cell, and set the number of steps to t= 5. Through this process,
MAGIC effectively reduces noise, recovers the underlying structure of the
data, and highlights the biological signals in cell gene expression.

Cell culture and reagents
All human GC cell lines were purchased from Guangzhou Cellcook Biotech
Co., Ltd (Guangzhou, China). The mouse GC cell line YTN2, YTN3, YTN5 and
YTN16 were a generous gift from Dr. Sachiyo Nomura, University of Tokyo.
AGS was cultured in Ham’s F-12 Nutrient Mixture (GIBCO, Carlsbad, CA)
containing 1% penicillin/streptomycin (GIBCO) and 10% fetal bovine serum
(Invitrogen Life Technologies, Carlsbad, CA). HGC-27, SNU-216, MKN28,
MKN45, KATO III and NCI-N87 were maintained in RPMI/1640 medium with
10% fetal bovine serum and 1% penicillin/streptomycin. YTN2, YTN3, YTN5
and YTN16 were maintained in Dulbecco’s modified Eagle’s medium
(DMEM, D6429, Sigma-Aldrich) with 10% fetal bovine serum, 1% penicillin/
streptomycin and MITO+ serum extender (No. 355006, Thomas Scientific).

All these cell lines were cultured at 37 °C in a humidified incubator with 5%
CO2. Mycoplasma infection was routinely examined once a month.

Tumor spheroid culture
Fetal bovine serum (FBS) was obtained from Umedium HeFei China. Cells
were seeded into ultra-low attachment 6-well dishes (Corning Life
Sciences, NY, USA) and cultured in Ham’s F-12K (Kaighn’s) containing
20 ng/ml epidermal growth factor (EGF), 10 ng/ml basic fibroblast growth
factor (bFGF), 2% B-27 (Life Technologies, Gaithersburg, MD, USA), and
2mM L-glutamine (Life Technologies, Gaithersburg, MD, USA) as previously
described. Spheroids were incubated in a 5% CO2 chamber at 37 °C for
seven days. The culture medium was changed every three days. The
diameter and number of tumor spheres in three random magnification
fields were calculated under All-in-one Fluorescence Microscope (BZ-X700,
Keyence Corp, Atlanta, GA, USA) in the bright light model. Spheroids were
collected after 7 days except when noted otherwise. Protein was extracted
for analysis, or cells were dissociated with Accutase (Innovative Cell
Technologies, San Diego, CA, USA) and used for other experiments.

Western blot analysis
RIPA buffer (middle) (Shanghai Beyotime, China) is used to lyse tissues and
cells. 40 μg of protein was loaded into each pore, separated by 10% SDS-
PAGE, and subsequently transferred onto a polyvinylidene fluoride
membrane (EMD Millipore, Billerica, MA, USA). Following blocking, the
membrane was incubated with primary antibody overnight in a dilution
buffer specifically designed for primary antibodies (Thermo Fisher
Scientific, Shanghai, China). Following TBST washing, the membrane was
subjected to incubation with corresponding antibodies at room tempera-
ture for 1 h and subsequently washed thrice with TBST. The proteins on the
membranes were visualized using enhanced chemiluminescence (Amer-
sham; GE Healthcare). Experiments were performed in triplicate. Utilize the
ImageJ software for the analysis of grayscale values in each strip. Each
experimental group is compared to the control group as a reference, and
the relative multiplication relationship is subsequently computed.
Information and concentrations of reagents used for Western blot are

provided below: LHPP (15759-1-AP, Proteintech, 1:500), beta Tubulin
(EM0103, HUABIO, 1:10,000), CD44 (ET1609-74, HUABIO, 1:1000), NANOG
(ET1610-2, HUABIO, 1:2000), SOX2 (R1106-1, HUABIO, 1:1000), SOX9
(ET1611-56, HUABIO, 1:2000), GSK3 beta (ET1607-71, HUABIO, 1:1000),
Phospho-GSK3 beta (ET1607-60, HUABIO, 1:1000).

Mice
Mist1-CreERT2 (Cat# 029228), Rosa26-LSL-Tdtomato (Cat# 007914), Apcfl/fl

(Cat# 029275) and p53fl/fl (Cat# 008462) mice were purchased from the
Jackson Laboratory (Bar Harbor, Maine, USA). The primers used for
genotyping in this study are listed in Table S3. Wild-type C57BL/6 mice
were purchased from Shanghai Slac Laboratory Animal Co., Ltd (Shanghai,
China). All mice used were 6–8 weeks of age. All animal experiments were
performed according to the Animal Protection Committee of Fujian
Medical University (Fuzhou, China) and approved by the Ethics Committee
of Fujian Medical University/Laboratory Animal Center (Fuzhou, China).

Tumor xenograft assay
All BALB/c nude mice (4–6 weeks of age) used in our study were
purchased from Beijing Vital River Laboratory Animal Technology Co.,
Ltd (Beijing, China). Wild-type C57BL/6 mice (6–8 weeks of age) were
purchased from Shanghai Slac Laboratory Animal Co., Ltd (Shanghai,
China). To evaluate the impact of LHPP on stemness, limiting dilution

Fig. 6 LHPP downregulation enhances stem cell-like characteristics and chemoresistance in gastric cancer cells. A Tumor formation
frequency at varying cell inoculation densities in xenograft models of AGS cells with upregulated LHPP expression. B Tumor formation
frequency at different cell inoculation densities in xenograft models of MKN45 cells with downregulated LHPP expression. C Tumor weight and
volume changes were recorded in xenograft models of AGS cells with a cell dose of 2 × 106. Student’s t test was used to compare the
differences between the two groups. D Tumor weight and volume changes were recorded in xenograft models of MKN45 cells with a cell dose
of 5 × 105. Student’s t test was used to compare the differences between the two groups. E Survival of patient-derived gastric cancer
organoids with stable LHPP overexpression, with and without oxaliplatin (OXA) treatment. F Quantitative analysis of the number and size of
surviving gastric cancer organoids. Data are presented as mean ± standard deviation (mean ± SD), with analysis performed using a Student’s t
test. G Apoptosis in LHPP-overexpressing and LHPP-knockdown gastric cancer cells following OXA treatment was assessed using apoptosis
flow cytometry. Bar charts provide a quantitative analysis of the differences in Annexin V-FITC and PI double-positive cell percentages.
Student’s t test was used to compare the differences between the two groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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assays were performed in nude mice and Wild-type C57BL/6 mice. Cells
were injected subcutaneously into the right axillary fossa of nude mice
at indicated cell concentrations. Five mice were used in each
experimental group. Tumor formation was checked every 3–4 days
and the mice were sacrificed at 4–6 weeks after injection and the tumors
were weighed and used in immunohistochemical staining studies.

Tumor volume was calculated with the following formula: V= (L × W2)/2
(V, tumor volume; L, length; W, width), and growth curves were plotted
using average tumor volume within each experimental group at the set
time points. The frequency of tumor-initiating cells was calculated
using the extreme limiting dilution analysis program (http://
bioinf.wehi.edu.au/software/elda/).
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Organoid culture
Human organoids culture was performed following previously published
protocol. Briefly, tumor tissues from the stomach were washed with PBS
containing 1× Penicillin/Streptomycin twice (BL505A, Biosharp, Hefei,
China), followed by removing the muscle layer and mucus using scissors.
Subsequently, the sample should be sliced into 2–3mm sections and
subjected to enzymatic digestion using 2.5 mg/ml of Collagenase A.
(Sigma-Aldrich, St. Louis, MO, USA) for 30min. Five ml Dissociation buffer,
containing D-sorbitol (Sigma-Aldrich, St. Louis, MO, USA) and sucrose
(Sigma-Aldrich, St. Louis, MO, USA), was added to the tissue and agitated
for 2 min. The final supernatant was filtered through a 70 μmmesh and the
crypts fraction was centrifuged at 150 g for 5 min. After being washed with
ice-cold PBS, the gland pellet was resuspended in Matrigel™ (356255,
Corning, USA) supplemented with standard gastric organoid advanced
DMEM/F12 (#12634010, Thermo Fisher Scientific, Waltham, MA, USA), 1×
GlutaMax (#35050061, Thermo Fisher Scientific, Waltham, MA, USA), 1×
HEPES (#15630080, Thermo Fisher Scientific, Waltham, MA, USA), 1×
Penicillin/Streptomycin, 50% Wnt3a, 10% RSPO-1, 10% Noggin, 1× B27
(#17504001, Thermo Fisher Scientific, Waltham, MA, USA), 50 ng/mL EGF
(PHG0311, Thermo Fisher Scientific, Waltham, MA, USA), 200 ng/mL FGF10
(#100-26, Peprotech, Rocky Hill, NJ, USA), 1 mM N-acetyl-L-cysteine
(#A9165, Sigma-Aldrich, St. Louis, MO, USA), 1 nM Gastrin (#G9145,
Sigma-Aldrich, St. Louis, MO, USA), 2 mM A83-01 (#2939/10, Tocris, Bristol,
UK), 10 mM Y-27632 (#1254/10, Tocris Bristol, UK). Finally, 50 μl Matrigel™
suspension was carefully ejected into the center of each well of the 24-well
plate. 1 ml of standard gastric organoid medium was added to each well.
The organoids were cultured in a 5% CO2 incubator at 37 °C and the media
was changed every 2–3 days. Organoids from the second passage were
infected with lentivirus carrying either control or RPRD1A overexpression
in 15ml tubes overnight. Seven days after infection, the diameter and
number of organoids were measured under a light microscope in three
random fields magnified at 100×. For histological examination of the
organoids, they were fixed in 4% paraformaldehyde for 1 h and
subsequently embedded in a 2% agarose gel or directly fixed in
formalin-containing Matrigel to generate paraffin blocks for sectioning
and staining.

Flow cytometry assay
The stably transfected GC cells were digested and centrifuged and placed
in 1.5 ml tubes. The cells were washed three times with PBS and
centrifuged at 1000 rpm for 5 min. This supernatant was discarded and
subsequently added to 100 μl staining buffer (PBS, pH 7.4, 0.1%BSA)
containing 1 μg/ml CD44 antibody and incubated at 4 °C for 30min. The
cells were subsequently resuspended in PBS without undergoing washing
and subjected to collection on a FACS flow cytometer as per the
manufacturer’s instructions. The results obtained were analyzed using
FlowJo software.

Statistical analysis
All data were processed using SPSS 25.0 (SPSS Inc. Chicago, IL) and R
software (version 4.0.0). Student’s t test or Wilcoxon rank-sum test was
used for continuous variables. We used the χ² test or Fisher exact test to
compare categorical variables of clinical characteristics. The Kaplan–Meier
method was used to estimate median survival. The log-rank test was used

to compare survival between two groups. The association of relevant
clinicopathological variables with overall survival was assessed using the
Cox proportional hazard model. Interactions between the clinicopatholo-
gical parameters and responsiveness to chemotherapy were tested with
the Cox model. Clustering charts based on the Z-score normalization
method were used to describe the level of the expression in each case. We
defined the survival time of patients who were lost to follow-up as the time
from surgery to the last follow-up time, and the survival time of patients
who were still alive at the end of the study was defined as the time from
surgery to the database deadline. Two-tailed p values < 0.05 were
indicated significant differences.

DATA AVAILABILITY
The sequencing data generated in this study came from GEO database and TCGA
database. The dataset analyzed for this study is available from the corresponding
author upon reasonable request.
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