FlowJo中文实用手册

(软件版本: FlowJo7.6.5 2012/06/20 更新)

第一章	FlowJo简介	1
<i>—</i> `,	FlowJo对电脑配置的要求	1
,	FlowJo的安装过程(Windows)	1
三、	FlowJo的工作台	5
第二章	FlowJo分析单标样本	6
<i>—</i> ,	由原始数据生成单参数直方图的过程	6
`,	图形的输出和保存1	0
第三章	FlowJo分析多色标记样本1	3
<i>—</i> `,	由原始数据生成二维点图的过程1	3
,	二维点图的设门原则1	6
三、	多色标记分析说明1	6
第四章	FlowJo软件荧光补偿1	8
<i>—</i> `,	用FlowJo做荧光补偿并进行数据分析的步骤1	8
`,	FlowJo荧光补偿的具体步骤1	8
三、	双指数转换2	4
第五章	FlowJo的批处理功能2	7
<i>—</i> `,	设门分析的批处理 2	7
,	表格分析的批处理3	2
三,	图形分析的批处理3	5
第六章	FlowJo分析细胞凋亡样本4	3
<i>—</i> ,	细胞凋亡概述4	3
,	FlowJo分析凋亡数据的过程4	4
三、	周亡数据结果分析4	5
FlowJo中	Ⅰ 文实用手册 杭州艾米绿生物科技有限公司 support@flowjochina.com 400-680-5527	7

 FlowJo软件分析细胞周期样本	第七章
 细胞周期分析概述	<i>—</i> ,
 FlowJo分析细胞周期数据的过程	<u> </u>
 细胞周期拟合的调整方法和步骤	三、
 细胞周期结果分析	四、

第一章 FlowJo简介

FlowJo是美国斯坦福大学Leonard Herzenberg(FACS机器的发明者)实验室 在90年代研发的一款流式数据分析软件。FlowJo由于功能强大,简单易用,已经 被领域内的科学家、实验室广泛引用;同时FlowJo也是各高影响力核心期刊引用 最多的流式数据分析软件。

一、FlowJo对电脑配置的要求

1. PC电脑:

操作系统: Windows XP, Vista, Windows7

内存: 512MB及以上

- 网络连接:使用试用序列号及联网序列号必需要有网络连接; 加密狗无需网络
- 2. 苹果电脑:

操作系统: OSX10.3或者更高版本

内存: 512MB及以上

网络连接: 使用试用序列号及联网序列号必需要有网络连接加; 密狗无需网络

1

二、FlowJo的安装过程(Windows)

请到我们的网站上下载最新版本:
 http://www.flowjochina.com/content/download

在此,我们下载V7.6.5 为例

http://www.flowjochina.com/sites/default/files/7.6.5_X32.exe 将文件下载到桌面之后,就可以看到FlowJo安装程序图标。

- 双击FlowJo安装程序
- 屏幕上出现解压进程窗口:

• 解压完成后出现安装窗口:

• 选择"NEXT"

• 选择"NEXT"

• 选择"NEXT"

- 选择"Install"软件自动安装。
- 软件安装完成后显示

• 选择"Done"进入软件版权信息窗口

FlowJo License Information	×
About Dongles	FlowJo does not detect a security key(dongle). If you have one attached, please click on "About Dongles" to view our trouble-shooting web page.
Register License	If you have just purchased FlowJo, and do not have a serial number, go to the web to get your serial number.
Purchase License	If you do not own the program, but wish to , you can buy it online.
Get Trial License	Otherwise, you'll probably want to request a free 30 day evaluation license
If you have been issued and click the button on	a serial number, enter it here, the right to activate it. Use Serial Number
SN must be 16 charac	ters
atternately, you may run in Demo Mo using our provided data files.	Run in Demo Mode
Hardware Address: 00266C7B0261	Quit

- 根据不同软件的授权方法,进行以下操作:
- a. 购买的加密狗:先在电脑上插入加密狗(Dongle),然后启动FlowJo。
- b. 购买的序列号:在序列号栏输入序列号(Serial Number),然后点击Use Serial Number按钮。
- c. 如果是初次试用,需要申请序列号:点击 Get Trial License按钮,在FlowJo 官方网站申请试用序列号。收到注册邮箱里的序列号之后,将试用序列号 输入序列号栏,点击Use Serial Number按钮。

d. 使用Demo模式:如果试用序列号已经过期,而且需要继续学习FlowJo,点击Run in Demo Mode按钮,在Demo模式下使用FlowJo提供的Demo数据进行数据分析。

三、FlowJo的工作台

双击桌面FlowJo软件图标,进入软件工作台。

软件工作台由菜单栏、常用工具栏、组空间和样本空间组成。

5 20120525 - FlowJo		
文件 编辑 工作台 组 工具 窗口 帮助	菜单栏	🞦 zh
	常用工具栏	
组和分析		样品数目
{:}} All Samples		0
	组空间	
名称	统计值	#细胞
将样品拖到在这里	样本空间	

第二章 FlowJo分析单标样本

单标记样本数据常用的显示方式是单参数直方图。单参数直方图是一维数据 用的最多的图形显示形式,既可以用于定性分析,又可以用于定量分析。横坐标 可以是线性标度或对数标度,单位用"通道数"或者"道数"来表示,在流式检测中 的含义是代表所检测的荧光或散射光的强度。纵坐标表示的是横坐标某一特定荧 光强度的细胞数,有时也用相对百分比来表现。

一、由原始数据生成单参数直方图的过程

原始数据: 手册中提到的演示数据,可以在flowjochina的网站上下载 www.flowjochina.com/sites/default/files/demodata.rar 选择3 color comp文件夹中的Cy5PE comp.fcs进行分析演示。将此文件夹存 放到桌面。

- 1. 双击桌面FlowJo软件图标,进入软件工作台。
- 2. 把"3 color comp"数据文件夹从桌面上拖入FlowJo。

🛐 20120521 - FlowJo		
文件 编辑 工作台 组 工具 窗口 帮助		📒 zh
	Ъ	
组和分析		样品数目
{II} All Samples		4
{I} 3 color comp		4
名称	统计值	#细胞
	统计值	# 细胞 50000
	统计值	#細胞 50000 30000
	统计值	#細胞 50000 30000 50000
	统计值	#細胞 50000 30000 50000 50000

- 在组空间中单击选中"3 color comp"组,此时在样本空间里显示"3 color comp"组中的所有样本。
- 在样本空间中双击"Cy5PE comp.fcs",出现图形窗口。

图形窗口显示为二维点图。

7

- X轴选择SSC(侧向散射,侧向散射的含义:它对细胞膜、细胞质和 核膜的折射更为敏感,其散射强度几乎与细胞内颗粒结构的质量成 近似直线关系,也就是说,细胞内颗粒结构越复杂,质量越大,其 SSC越大;反之则越小)
- Y轴选择FSC(前向散射,前向散射的含义:该值的大小与细胞的直径近似直线关系,也就说,对于不同的细胞,细胞越大,其FSC就越大;反之则越小)
- 3) 然后选择设门工具(矩形门□、椭圆门□、多边形门□、自动门
 ◎
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

8

杭州艾米绿生物科技有限公司

- 在图形窗口中双击选中的淋巴细胞,生成新的图形窗口。
 - 1) 在X轴选择Cy5PE:CD4, Y轴选择Histogram,
 - 2) 选择设门工具(区域门 , 双分门) 中任意一个,在单参数直方 图中设门。
 - a. 双分门设门如下图所示:

左边区域为CD4阴性细胞,右边区域为CD4阳性细胞

b. 区域门设门如下图所示:

左边区域为CD4阴性细胞,右边区域为CD阳性细胞

- 二、图形的输出和保存
 - a. 在单参数图上点击鼠标右键选择复制图片,可以把图片粘贴到 WORD或PPT中。
 - b. 在图形分析窗口菜单栏中选择"文件"并单击,选择下拉菜单中的"另 存为",选择保存位置、重新命名文件名以及保存的文件类型(SVG、 PNG、EMF、JPG)。

- c. 在FlowJo工作台单击 口打开布局编辑器。
- d. 在样本空间中,把淋巴细胞的节点拖入到布局编辑器中。 淋巴细胞节点如下图所示:

5 20120522 - FlowJo		_ D X
文件 编辑 工作台 组 工具 窗口 帮助		🚩 zh
$\boxed{}^+ \boxed{}^+ \boxed{}^+ \underbrace{}^+ \phantom{$	F	
组和分析		样品数目
{ II } All Samples		4
{ T } 3 color comp		4
名称	统计值	#细胞
O 3-COLOR.FCS		50000
🛇 🔘 🛨 🖥 Cy5PE comp.fcs		30000
▼ ③ 淋巴细胞	32.3%	
CD4+	45.3%	
CD4-	54.7%	
FITC comp.fcs		50000
PE comp.fcs		50000

布局编辑器显示的单参数直方图如下图所示:

e. 在布局编辑器中点击保存按钮 , 在弹出的对话框中选择保存的路径, 更改保存的图片名称以及图片格式。

备注:

① 可以在图片名称后面直接输入需要保存的格式,比如命名并保存为: data001.JPG。可以保存的图片格式有: JPG, PNG, GIF, EMF, SVG, PDF。

② FlowJo默认的图片格式为PNG格式

f. 更改布局编辑器输出的默认图片格式的步骤:

① 到工作台的菜单栏中点击"编辑"菜单,在下拉列表中选择"偏好设置",在偏好设置对话框中选择"文件格式"

② 点击在布局编辑器项目下拉按钮,选择需要的图片格式:

	×
PNG -	
CSV	
PNG	
PNG	
GIF	
PDF	
EMF	
576	
Select	
	PNG CSV PNG PNG PNG JPG GIF PDF EMF SVG Select

第三章 FlowJo分析多色标记样本

多色标记样本,包含双标记、三标记及以上的样本。多色标记样本分析的原则是把多色标记简化为单标记或双标记。多色标记样本在采集或数据处理过程中 需要做荧光补偿。在FlowJo中的数据显示方式是二维点图。二维点图能够显示两 个独立参数与细胞相对数之间的关系,横坐标和纵坐标分别代表与细胞有关的两 个独立参数,平面上的每一个点表示具有相应坐标值的细胞。一般来说可以由一 个二维点图得到两个一维直方图,但是由于多个细胞具有相同二维坐标现象的存 在,所以二维点图的信息量要大于两个一维直方图的信息量。二维点图在设十字 门之后被分成四个区域,实验目的不同,各个区域所代表的含义不同。本手册提 供参考的是三标记样本的分析步骤。只要灵活掌握分析技巧,根据实验需求学会 把多色分析简化,这样就可以做到事半功倍的效果。

一、由原始数据生成二维点图的过程

原始数据:为FlowJo演示数据,选择3-color-experiment文件夹中的931115-B02-Sample01.FCS进行分析演示。

- 1. 打开软件,将"3-color-experiment"文件夹拖入FlowJo工作台。
- 2. 在样本空间中双击"931115-B02-Sample01.FCS"样本,出现图形窗口,显示

为二维点图。X轴选择FSC,Y轴选择SSC。然后选择多边形设门工具 **凶**, 在二维点图中选中淋巴细胞。如下图所示:

3. 双击淋巴细胞门,出现图形窗口,X轴选择Fluor::CD3,Y轴选择FSC。使用矩形设门工具 选中CD3阳性细胞,设门并命名为T细胞

400-680-5527

14 杭州艾米绿生物科技有限公司

FlowJo中文实用手册

- 4. 双击T细胞门,出现图形窗口,在X轴选择Cy5PE::CD4,Y轴选择
 PhyEry::CD8,使用十字门工具 + 设门,如下图所示:
 Q1: CD8单阳性细胞,为CD8+T细胞
 Q2: 双阳性细胞
 - Q3: CD4单阳性细胞,为CD4+T细胞
 - Q4: 双阴性细胞

四分门更改门位置的方法:

单击四分门"十字"的交点选中这个四分门,如下图所示。拖动鼠标将四分 门移到目标位置。

二、二维点图的设门原则

二维点图常用四分门来设门,四分门设门要根据阴性对照界定阴性区。根据 细胞分群的趋势,四分门的界定线可设在阴性、阳性细胞的分群处。

三、多色标记分析说明

多色样本分析在实验中具有重要的地位,很多用户对多色分析感觉无从下 手。其实,流式分析中结果的显示一般都是一维和二维的。因此,在流式 分析中无论是几色标记的样本,只要把多色的分析简化为单标记和双标记 的分析,问题就会迎刃而解。 比如:检测TREG需要标记CD4/CD25/FOXP3,可以用SSC vs. CD4的二维点 图,把CD4+的细胞圈出来。然后用CD25 vs. FOXP3的二维点图,把 CD25+/FOXP3+的细胞表示出来。这样就可以把CD4+/CD25+/FOXP3+的 TREG细胞辨别出来。上面的实例就是把三标记的样本转化为两个二维的点 图进行分析。

第四章 FlowJo软件荧光补偿

在做多色流式实验的时候,荧光补偿是必需进行的步骤。FlowJo可以根据荧光补偿单染对照管的数据生成补偿矩阵,并可以对补偿矩阵进行调整。

一、用FlowJo做荧光补偿并进行数据分析的步骤

- 1. 在补偿编辑器中导入单染管的数据并生成荧光补偿矩阵
- 2. 将补偿矩阵应用到组,对组里面的所有数据进行荧光补偿
- 3. 对补偿过的参数轴启用双指数转换功能

二、FlowJo荧光补偿的具体步骤

如果荧光补偿单染对照的数据很好,阴性细胞群和阳性细胞群的分群很明显,只需要将单染管的数据导入FlowJo的补偿编辑器里,FlowJo能自动设门,界定出阴性细胞群和阳性细胞群,并计算出荧光补偿矩阵。操作非常简单,下面的4个步骤便可完成荧光补偿:

视频教程可以在线观看:

http://www.video.flowjochina.com/v75%20Compensation_conv.html 1. 将数据拖入FlowJo工作台。

演示数据为: 3 color comp数据,为三色实验的数据。Cy5PE comp.fcs, FITC comp.fcs, PE comp.fcs为单染对照管数据; 3-COLOR.FCS为样本数据,同时染了Cy5PE, FITC, PE

🛐 20120529 - FlowJo			x
文件 编辑 工作台 组 工具 窗口 帮助			📔 zh
	5		
组和分析		样品数目	
{II} All Samples			4
{ I } 3 color comp			4
名称	统计值	#细胞	
🛇 🖂 🛛 🖥 3-COLOR.FCS			50000
🔿 🖂 🗧 🖥 Cy5PE comp.fcs			30000
🔿 🖂 🛛 🖥 FITC comp.fcs			50000
🔿 🖂 🛛 🖥 PE comp.fcs			50000

到工作台菜单栏的"窗口"栏选择"打开补偿编辑器",打开后如下图所示。点击单染管对应的Sample列,在弹出的下拉列表中选择对应的单染管数据。比如在下图的例子中,在Flour单染管中导入FITC comp.fcs

🚺 Compensa	ation Editor - 20120529				
文件 编辑 补	ト偿 转化(Transform) 帮助				
+=-	无标题				
0000	矩阵和转化(transformation) 向导图	16			
一 无标题	溢漏矩阵				
	将单染样品的对照细胞群拖到空投圈 或者,直接编辑溢漏矩阵,行是荧光源, 完成	1上. ;列是荧光探测器.			
		Sample		00	00
	Cy5PE				
	Fluor	-			
	PhyEry	3-COLOR.FC	s		
00	0	Cy5PE comp	.fcs		
		FITC comp.f	cs	_	
		PE comp.fcs	yEry		
	Cy5PE	100% 0.00%	0.00%		
	Fluor	0.00% 100%	0.00%		
	PhyEry	0.00% 0.00%	100%		
	将补偿对照拖到这里	1 补偿矩	阵		
	<	III			4

 按照步骤2中的方法,在3个单染管中都导入对应的数据之后,FlowJo能自动 进行设门,界定出阳性细胞群和阴性细胞群,并计算出荧光补偿矩阵。如下 图所示:

5 Compense	ation Editor - 20120529					- • ×
文件 编辑 社	补偿 转化(Transform) 帮助					
+=-	无标题					
2000 王禄聞	矩阵和转化(transformation) 湿凝矩阵 将单染样品的对照细胞群拖 或者,直接编辑湿稳矩阵,行机	向导因形 间交投版上。 是荧光和:列是荧光探测器				
	00 00	Sample			00	00
	CydPE	CySPE com	p.fcs		cw_Size/cw_CySPE-	cw_Size/cw_C
	Fluor	FITC comp	.fcs		cw_Size/cw_Fluor-	cw_Size/cw_F
	PhyEry	PE comp.fc	s		cw_Size/cw_PhyEry-	cw_Size/cw_P
00	O					
		CySPE	Fluor	PhyEry	ח	
	CySPE	100%	0.488%	23.6%		
	Fluor	3.47%	100%	16.5%		
	PhyEry	24.3%	1.92%	100%		
	将补偿对照拖到	这里				
	•					•

 将补偿矩阵应用到所有样本进行荧光补偿:在工作台的组空间中选中需要进 行荧光补偿的组,到补偿编辑器的菜单栏中选择"补偿 > 添加到组",

👩 Compensati	on Editor - 201	20523-1
文件 编辑 补偿	尝 转化(Transt	form) 帮助
Ŧ=-	向导	Ctrl+E
0000	添加到组	Ctrl+0
无标题	重设	Ctrl+R
✓	显示样品分	स ग्र
✓	显示矩阵	闼
	显示补偿脚	本 💄

对该组的所有数据进行荧光补偿,补偿过的数据前面带有 **H**标志,如下图 所示:

5 20120529 - FlowJo		
文件 编辑 工作台 组 工具 窗口 帮助		📒 zh
$^{+} \checkmark ^{+} \checkmark ^{+} \checkmark $		
组和分析		样品数目
{ } All Samples		4
{1} 3 color comp		4
() the	续计值	# श्या शिव
2.76	and the second	1 1 NULCES 1
	50.11 LL	50000
名称 3-COLOR.FCS	JI 57.41 BL	50000
	1 元月區	50000 30000 50000
		50000 30000 50000
	50,4 LB	50000 30000 50000 50000

如果某个单染管的数据不是很理想(poor control), FlowJo不能自动界定出 阴性细胞群和阳性细胞群,比如下面的实例:

操作步骤:

1. 按照上面的步骤1,2,3操作之后,如果出现一些设门的意外情况的话,如此组 数据中: FlowJo没能自动界定出PE单染管的阴性细胞群和阳性细胞群。

🚺 20120530 - FlowJo			20530
文件 编辑 工作台 组 工具 窗口 帮助		🞦 zh	orm) 帮助
U ⁺ 通U ⁺ {U ⁺ 组和分析 {I} All Samples {I} 3 color comp		品数目 4 4	拒阵和转代(transformation) 澄漏矩阵 将单染样品的对照细胞群推
名称 3-COLOR ECS	统计值	#细胞 50000	或者,直接编辑盈稿矩阵,们 完成
Cy5PE comp.fcs		30000	00 00
w Size	35.7%		
C cw_Cy5PE+	42.2%	-	Cy5PE
C Cw_Cy5PE-	53.7%		Fluor
🛇 🔘 🛨 🖥 FITC comp.fcs		50000	
🔿 🛛 🛨 🕲 cw_Size	32.0%		
Cw_Fluor+	21.9%		0 000000
C _ Cw_Fluor-	71.5%		
🔿 🗋 🛨 🖥 PE comp.fcs		50000	
🗸 🐨 cw_Size	32.4%		
C Cw_PhyEry-	71.8%		Cy5PE

21

- 1) 单击选中工作台样本空间中PE单染管下的cw_Size节点,将其删除
- 2) 右键单击补偿编辑器中的单染管出,点击"Clear",将错误添加进去的单染 管数据清除,如下图所示:

- 将错误界定的细胞群以及错误添加到补偿编辑器的数据清除之后,我们需要 自己手动设门,界定出单染管的阴性细胞群和阳性细胞群,并手动将其添加 到补偿编辑器。按以下步骤操作:
 - 在工作台样本空间中双击PE单染管,在FSC/SSC点图中,界定出目标 细胞群(淋巴细胞)

2) 双击淋巴细胞群,打开图形窗口,X轴选择PhyEry::aCD8,Y轴选择 Histogram,选择区域门工具,界定出PE阳性和PE阴性细胞群,如下 图所示:

备注:

- a. 在设门的时候,选择区域门工具,阴性门和阳性门尽量设在细胞群分布的中心区域
- b. 如果单染管的直方图没有明显的双峰,在设门的时候,阴性门 和阳性门之间的距离应尽可能远一些
- 将工作台样本空间的"PE-"节点拖到补偿编辑器里PE单染管的阴性孔, "PE+"节点拖到阳性孔里

 当所有单染管的数据都被添加到补偿编辑器后,FlowJo自动计算出补偿矩阵。 在工作台组空间中选择3-color comp组,然后到补偿编辑器的菜单栏中选择 "补偿 >添加到组",对该组的所有样本进行荧光补偿。

三、双指数转换

补偿过的数据,由于减去了荧光溢漏值,会产生"0"和"负值"。如果使用Log 轴(只能显示正值),"0"和"负值"会被压在坐标轴上。这时,我们需要采用 "Logical"参数轴来显示。在FlowJo中,可以通过双指数转换功能实现。继续使用 上一步骤产生的工作台,操作步骤如下(*演示数据为3-color comp组中的3-COLOR.FCS)*:

 在3-COLOR数据中设淋巴细胞门,双击淋巴细胞门,在打开的图形窗口中 X轴选择CD3,Y轴选择CD8,会发现有细胞压在坐标轴上,如下图所示: 图中gate1的范围很小,但却显示里面的细胞比例达到了35.1%,表明有很 多细胞压在坐标轴上。

24

2. 在X轴和Y轴点击坐标轴边上的T按钮**正**,在弹出的下拉列表中选择"用双 指数转换",如下图所示:

 如果启用双指数转换之后,发现还有细胞压在坐标轴上,点击T按钮,选 择"Change transform values",打开设置转化值对话框。通过将"附加负十位" 的值变大,或者将"宽度基底"的值变小,能将压在坐标轴上的细胞显示出 来。

为 Comp-Cy5PE 设置转化值(tran	nsform)	x
附加负十进位	0.0	
正十进位:	4.0	
宽度基底(< 0):	-10	
Apply		消

25 杭州艾米绿生物科技有限公司 比如上面的例子中,将X轴的"宽度基底"值从"-10"调为"-30",使压轴的细胞完全显示出来,如下图所示:

备注:

- a. 双指数转换只是更改了数据呈现的方式,不会对数据本身做任何更改。
- b. 任何FCS3.0数据都可以在F1owJo上做双指数转换,如果是FCS2.0的数据的话,如果不在机器上进行补偿操作,而是在F1owJo里补偿的话, 也可以进行双指数转换。

第五章 FlowJo的批处理功能

演示数据: Titration Data, 一个抗体滴定实验的数据, CD8单染。Sample 1为对 照组, Sample 2~Sample 8所加的抗体浓度按照2倍的梯度递减。

5 20120529 - FlowJo		
文件 编辑 工作台 组 工具 窗口 帮助		📒 zh
	5	
组和分析	1	洋品数目
{I} All Samples		8
<pre>{I} Titration Data</pre>		8
A 7		
名称	统计值	# 细胞
	统计值	#细胞 10000
名称 ○ □ □ Sample 1 (Control).fcs ○ □ □ □ Sample 2.fcs	统计值	#细胞 10000 10000
名称 Sample 1 (Control).fcs Sample 2.fcs Sample 3.fcs	统计值	#細胞 10000 10000 10000
名称 ↓ Sample 1 (Control).fcs ↓ Sample 2.fcs ↓ Sample 3.fcs ↓ Sample 4.fcs	统计值	#細胞 10000 10000 10000 10000
名称 Sample 1 (Control).fcs Sample 2.fcs Sample 3.fcs Sample 4.fcs Sample 5.fcs	统计值	#細胞 10000 10000 10000 10000 10000
名称 Sample 1 (Control).fcs Sample 2.fcs Sample 3.fcs Sample 4.fcs Sample 5.fcs Sample 6.fcs	统计值	#細胞 10000 10000 10000 10000 10000 10000 10000
名称 Sample 1 (Control).fcs Sample 2.fcs Sample 3.fcs Sample 4.fcs Sample 5.fcs Sample 6.fcs Sample 7.fcs	统计值	#細胞 10000 10000 10000 10000 10000 10000 10000
名称 Sample 1 (Control).fcs Sample 2.fcs Sample 3.fcs Sample 4.fcs Sample 5.fcs Sample 6.fcs Sample 7.fcs Sample 8.fcs	统计值	#細胞 10000 10000 10000 10000 10000 10000 10000 10000

一、设门分析的批处理

1. 设门

在工作台中双击阴性对照的数据Sample 1,用自动门工具设淋巴细胞门,

双击淋巴细胞门,在X轴选择FL1-H,Y轴选择Histogram;Sample1是未染色的 阴性对照,用来确定抗体染色的阴性和阳性的界限。用双分门工具设门,门的位置如下图所示。设门完成后,在工作台中右键单击FL1-H+节点,在下拉 菜单中选择"Rename",将其重命名为CD8+;同样的方法将FL1-H-节点重命名为 CD8-

2. 添加统计数据

在工作台中单击选中CD8+节点,到常用工具栏中点击添加统计数据按钮

Add Statistic						
Choose a statistic and any applicable parameters below. Press the Add button to apply them to your analysis.						
Median						
Mean	Parameter:	Choose 👻				
Geom. Mean Robust CV	Percentile:	Choose FSC-H:: Forward Scatter				
CV StdDev	Freq. of	SSC-H:: Side Scatter FL1-H				
%ile Freq. of Total		Add to all parameters				
Freq. of Parent		Add to all hoorescence parameters				
Freq. of Grandparent						
Freq. of						
总数						
Mode						
帮助 🔲 Show C	帝助 Show Channel Stats 添加 关闭					

打开添加统计数据对话框。选择Median(中位数),在Parameter(参数)栏中 选择FL1-H,点击添加。这样就给CD8阳性细胞群添加了FL1-H荧光强度的中位 数。如下图所示:

0 20120323 - HOWIO			x
文件 编辑 工作台 组 工具 窗口 帮助			📔 zh
组和分析		样品数目	
{ II } All Samples			8
{ I } litration Data			0
名称	统计值	#细胞	
🔿 🗋 🔻 🖥 Sample 1 (Control).fcs	1701 a.s.	1410	10000
◇ 🚽 🐨 淋巴细胞	70.0%		
🗸 🐵 CD8+	0.00%		
Σ (FL1-H) : Median	n/a		
Σ (FL1-H) : Median © CD8-	n/a 100%		
Σ (FL1-H) : Median CD8- Sample 2.fcs	n/a 100%		10000
Σ (FL1-H) : Median CD8- Sample 2.fcs Sample 3.fcs	n/a 100%		10000 10000
Σ (FL1-H) : Median CD8- Sample 2.fcs Sample 3.fcs Sample 4.fcs	n/a 100%		10000 10000 10000
Σ (FL1-H) : Median CD8- Sample 2.fcs Sample 3.fcs Sample 4.fcs Sample 5.fcs	n/a 100%		10000 10000 10000 10000
Σ (FL1-H) : Median CD8- Sample 2.fcs Sample 3.fcs Sample 4.fcs Sample 5.fcs Sample 6.fcs	n/a 100%		10000 10000 10000 10000 10000
Σ (FL1-H) : Median ③ CD8- ③ Sample 2.fcs ③ Sample 3.fcs ④ Sample 4.fcs ⑤ Sample 5.fcs ⑤ Sample 6.fcs ⑤ Sample 7.fcs	n/a 100%		10000 10000 10000 10000 10000 10000

在工作台中单击选中Σ(FL1-H):Median节点,将其拖到CD8-节点上,给CD8阴性 细胞群添加FL1-H荧光强度的中位数。如下图所示:

5 20120529 - FlowJo			x
文件 编辑 工作台 组 工具 窗口 帮助		•	zh
组和分析		样品数目	
{] } All Samples			8
{ 🖓 Titration Data			8
名称	统计值	#细胞	
🛇 🗌 🛨 🖥 Sample 1 (Control).fcs		10000	
◇ ▼ ⑧ 淋巴细胞	70.0%		
CD8+	0.00%		
∑ (FL1-H) : Median	n/a		
CD8-	100%		
Σ (FL1-H) : Median	4.19		
🛇 🗋 🗧 🖥 Sample 2.fcs		10000	1 =
🛇 🗋 🗧 🖥 Sample 3.fcs		10000	1
🛇 🗌 🗧 🖥 Sample 4.fcs		10000	1
🛇 🗋 🖬 🖥 Sample 5.fcs		10000	1
🛇 🗌 🗧 🖥 Sample 6.fcs		10000	
🛇 🗌 🗧 🖥 Sample 7.fcs		10000	
A G I Samnle 8 fre		10000	•

3. 设门分析的批处理

在工作台中单击选中Sample 1样本下的"淋巴细胞"节点,将其拖到Sample 2样本上,这样就对Sample 2设了一个"淋巴细胞"门。这个淋巴细胞门的位置与Sample 1中淋巴细胞门的位置相同。如下图所示:

5 20120529 - FlowJo			x
文件 编辑 工作台 组 工具 窗口 帮助		2	📕 zh
$^+ ^+ ^+ ^+ ^+ $			
组和分析		样品数目	
{ I } All Samples			8
{] } Titration Data			8
名称	统计值	#细胞	
Sample 1 (Control).fcs	70.00/	1000	<u>^</u> 0
	70.0%		_
	0.00%		
Σ (FL1-H) : Median	n/a		
CD8-	100%		
Σ (FL1-H) : Median	4.19		=
🛇 🗌 🔻 🖥 Sample 2.fcs		1000	0
◇ ③ 淋巴细胞	69.3%		
🛇 🗌 🗧 🖥 Sample 3.fcs		1000	0
🛇 🗌 🗧 Sample 4.fcs		1000	0
🛇 🗌 🗧 Sample 5.fcs		1000	0
🛇 🗌 🗧 Sample 6.fcs		1000	0
COL I Sample 7 fcs		1000	0 -

在工作台中单击选中Sample 1样本下的"淋巴细胞"节点,将其拖到组空间的 "Titration Data"组上,这样就对该组中的所有样本都设了一个"淋巴细胞"门,这 个淋巴细胞门的位置与Sample 1 中淋巴细胞门的位置相同。如下图所示:

🛐 20120529 - FlowJo			×
文件 编辑 工作台 组 工具 窗口 帮助		2	zh
组和分析		样品数目	
{II} All Samples			8
▼ {□} Titration Data			8
③ 淋巴细胞			
名称	统计值	#细胞	
🛇 🖂 🛨 🖥 Sample 1 (Control).fcs		10000	- I
◇ ▶ ③ 淋巴细胞	70.0%		
🔿 🗋 🛨 🖥 Sample 2.fcs		10000	•
○ ⑥ 淋巴细胞	69.3%		
🔿 🗋 🛨 🖥 Sample 3.fcs		10000	' Ξ
○ ③ 淋巴细胞	68.5%		
🔿 🗋 🛨 🖥 Sample 4.fcs		10000	•
○ ⑥ 淋巴细胞	67.5%		
🔿 🖂 🛨 🖥 Sample 5.fcs		10000	,
○ ④ 淋巴细胞	69.0%		
🖒 🗋 🛨 🖥 Sample 6.fcs		10000	1
○ ⑥ 淋巴细胞	70.0%		-

按住ALT键,在工作台中单击Sample 1 样本下的"淋巴细胞"节点,能够将淋巴细胞节点及其以下的所有节点全部选中,然后将其拖到组空间的Titration Data组上。这样就对该组中的所有样本都进行了与Sample 1样本中一样的设门和添加统计数据。如下图:

5 20120529 - FlowJo			x
文件 编辑 工作台 组 工具 窗口 帮助		*	zh
组和分析		样品数目	
{ II } All Samples			8
			8
▼ ⑧ 淋巴细胞			
▼ [®] CD8+			
Σ (FL1-H) : Median			
▼ [®] CD8-			
Σ (FL1-H) : Median			
	the set of the	H. Log Bio	-
	统计值	#细胞	
Sample 1 (Control).rcs	70.0%	10000	<u> </u>
	0.0%		
	0.00%		
Δ (FL1-H) : Median	100%		
	100%		
Σ (FL1-H) : Median	4.19	1000	
Sample 2.rcs	60.204	1000	
	09.3%		
CD8+	21.2%		4

二、表格分析的批处理

1. 在表格编辑器中导入需要进行表格分析的统计数据:

在工作台的常用工具栏点击表格编辑器按钮 , 打开表格编辑器

🛐 FlowJo 表	格 - 20120529.wsp: 无标题			_ D X
文件 编辑	输出 帮助			
+ = -	无标题		[]+ i	Batch
			{Workspace Selection} 👻	Sample 👻
无标题,列	Population	统计值	参数	名称

在工作台的样本空间中,将Sample 1样本的CD8+节点和CD8-节点及其下方的 Σ(FL1-H):Median节点拖到表格编辑器中,如下图所示:

F) Flow	wJo 表格 - 2	0120529.wsp: 无标题				x
文件 纟	编辑 输出	帮助				
+=		2		[]+] [i	Batch	
			A	ll Samples	Sample 🔻	
无标题	列	Population	统计值	参数	名称	
	Σ 1	淋巴细胞/CD8+	Freq. of Parent			
	Σ 2	淋巴细胞/CD8+	Median	FL1-H		
	Σ 3	淋巴细胞/CD8-	Freq. of Parent			
	Σ 4	淋巴细胞/CD8-	Median	FL1-H		

2. 在表格编辑器中添加新的列:

在表格编辑器中点击添加列按钮 ①, 打开"列信息"对话框,选择"Keyword"选项卡,在"文件关键词"中选择"Antibody Concentration",将列标题命名为"抗体浓度",点击OK

D	列信息			×
列 [[54]	N标题: 抗体浓度			
	合		□参数关键词	
	\$MODE \$NEXTDATA \$SYS \$TOT Antibody Concer BD\$AcqLibVersio BD\$LASERMODE BD\$PAR BD\$P1N BD\$P2N BD\$P3N	ntration n	\$P 18 \$P 1E \$P 1G \$P 1N \$P 1R \$P 1R \$P 1S \$P 2B \$P 2E \$P 2G \$P 2N \$P 2R	
+/7	■ 熟園			
THE If	(none)	Equals	Then: Do	ld italic 文本 坊东
If	(none)	Equals	+ then: bo	
If	(none) -	Equals	→ then: bo	lditalic文本 埴充
If	(none) -	Equals	v then: bo	old
了解	· <u>更多</u>			OK Cancel

3. 在表格编辑器中添加公式列:

在表格编辑器中点击添加列按钮,打开"列信息"对话框,选择"函数"选项卡。编辑公式"CD8+(FL1-H) Median ÷ CD8-(FL1-H) Median",计算CD8阳性细胞荧光强度中位数与CD8阴性细胞荧光强度中位数之比。将列标题命名为MFI比率。点击OK

6 3	列信息							×		
列	列标题: MFI比率									
📄 设为对照 📄 隐藏此列										
统议	†值 Keyw	vord 函数	X 🔶							
	<column "淋巴细胞="" (fl1-h)"="" :="" cd8+ (fl1-h)="" medianmedian=""> / <column "淋巴细胞/CD8- (FL1-H) : MedianMedian (FL1-H)"></column </column>									
	ŧ	插入参考: Select								
	łi	插入函数:		Select	•	帮助				
	[热图								
格	式法则一		1	-						
If	(none)		•	Equals				又本一項九		
It	(none)		•	Equals		then: bo		文本 填充		
If	(none)		•	Equals		then: bo	ld 🔄 italic	文本		
If	(none)		•	Equals	× _	then: bo	ld 🗌 italic	文本 埴充		
了解	更多						ОК	Cancel		

在经过上述操作之后,表格编辑器如下图所示:

FlowJo 表格 - 20120529.wsp: 无标题										
文件 编辑 输出 帮助										
+=(一 无标题	a	Batch							
				All Samples	▼ Sample ▼					
无标题。列	ij	Population	统计值	参数	名称					
	∑ 1	淋巴细胞/CD8+	Freq. of Parent							
	∑ 2	淋巴细胞/CD8+	Median	FL1-H						
	∑ 3	淋巴细胞/CD8-	Freq. of Parent							
	Σ4	淋巴细胞/CD8-	Median	FL1-H						
	9 5	Antibody Concentration			抗体浓度					
	f × ⁶	Formula			MFI比率					
					,					

34

4. 表格分析的批处理:

点击表格编辑器右上角的批处理按钮 Batch...

得到批处理的结果。

「J Table - 无标题								
文件 编辑 FlowJo 帮助				1				
Ancestry Subset Statistic For	淋巴细胞 CD8+ Freq. of Parent	淋巴细胞 /CD8+ Median	淋巴细胞 CD8- Freq. of Parent	淋巴细胞/CD8- Median FL1-H	抗体浓度	MFI比率		
Sample 1 (Control).fcs	0.00%	n/a	100%	4.19		0		
Sample 2.fcs	27.2%	375	72.8%	4.56	2	8		
Sample 3.fcs	31.6%	375	68.4%	4.57	1	8		
Sample 4.fcs	26.6%	320	73.4%	4.49	.5	7		
Sample 5.fcs	32.7%	285	67.3%	4.36	.25	6		
Sample 6.fcs	29.8%	208	70.2%	4.34	.125	4		
Sample 7.fcs	31.5%	156	68.5%	4.44	.0625	3		
Sample 8.fcs	31.6%	99.9	68.4%	4.29	.03125	2		
Mean	26.4%	260	73.6%	4.40	0.567	5		
Standard Deviation	10.9%	108	10.9%	0.134	0.717	2		

从结果中可以看出,随着抗体浓度的增加,MFI的比率不断增加,当抗体浓度增加到1之后,MFI的比率没有明显的增加,可以判定最佳的抗体浓度为1.

三、图形分析的批处理及图像叠加

1. 图形分析的批处理

点击工作台常用工具栏中的布局编辑器按钮 ,打开布局编辑器,将工作台中Sample 1样本下的淋巴细胞节点拖入布局编辑器

点击布局编辑器右上角的批处理按钮 Batch...,得到批处理的结果,选择输出到 FlowJo里,点击"创建",将"Titration Data"组中的所有样本的淋巴细胞的直方图 都输出到FlowJo的布局页里,如下图所示:

2. 图形的叠加(Overlay):

例1:

将Titration Data中的所有实验样本的直方图分别与对照样本的直方图进行叠加, 以显示出实验样本与对照样本之间的差别。操作步骤如下:

(1) 先将Sample 1样本的淋巴细胞节点拖入布局页,再将Sample 2样本的淋巴细胞 节点拖到布局页的Sample 1的直方图上,此时鼠标指针显示为 ③,松开鼠标之后, 两个图形便重叠在一起。此时右上角的批处理按钮未启用

(2) 双击重叠之后的图形,打开图形定义窗口,选择"Specify"选项卡,在"Control" 选项中双击Sample 1,将Sample 1设为对照,其前面会显示打钩。点击OK。

Graph Definition	×
Sample 2.fcs	
Specify Annotate Fonts	
X Axis: FL1-H:: CD8.8	•
Y Axis: Histogram	Ŧ
Graph Type: Histogram 👻	
Contour Levels:	
Smooth Foreground:	
Show Outliers Background:	
Use Large Dots	
Y Axis: Auto 最大:	
Controls Checked items remain locked during iteration. Double click to change setting.	
✓ Sample 1 (Control).fcs:淋巴细胞 Scale: Horizontal: 100 % Vertical: 100 % □	
和助应用 OK	取消

(3) 当设定了对照之后,布局页右上角的批处理按钮被启用。点击批处理按钮, 进行批量处理,所有实验样本都分别与对照样本进行了直方图重叠。

例2:

将Titration Data中所有的实验样本都同时与对照样本进行叠加,以显示出该组中 所有样本的变化趋势。操作步骤如下:

(1) 将Sample 1样本的淋巴细胞节点拖入布局页,在工作台中按住CTRL键将所有 样本下的淋巴细胞节点选中(或者,先单击选中Sample 1样本的淋巴细胞节点, 然后到工作台的菜单栏中选择"编辑"菜单中的"选择同一层次的所有节点")。然 后将选中的所有节点拖到布局页中Sample 1的直方图上。这样,所有样本的直方 图都进行了重叠。

(2) 右键单击重叠后的直方图, 在弹出的下拉列表中选择"直方图"中的"立体偏移"

(3) 单击选中立体偏移之后的图形,点击右下角蓝色的小方块可以对图形进行拉 伸或旋转。

(4) 右键单击图标栏的样本名称, 在弹出的下拉菜单中选择"coloring"中的"filled", 对该样本进行颜色填充。

(5) 对所有的样本都进行颜色填充之后,得到的图形如下

第六章 FlowJo分析细胞凋亡样本

一、细胞凋亡概述

细胞调亡又称细胞程序性死亡,有别于细胞坏死。细胞调亡是指在一定的生理病 理情况下机体为维护内环境的稳定,通过基因调控,在一系列酶的参与下,使生 物体内一些无用的、老化的细胞高度有序的自动死亡过程。Annexin V-FITC/PI 双标记法检测细胞的调亡是实验室常用的一种方法。

Annexin V-FITC/PI双标法染色的原理:

磷脂酰丝氨酸(PS)能与连接素V(Annexin V-FITC)发生特异性结合。正常的 活细胞带负电磷脂酰丝氨酸(PS)位于细胞膜的内侧。细胞凋亡发生时,由于 细胞膜磷脂对称性的改变而使PS外翻暴露于细胞膜外。PI为核酸荧光染料,不能 穿透正常细胞的细胞膜,只能进入细胞膜损坏的细胞。凋亡细胞因为PS外翻从 而可以和Annexin结合,但是保持了细胞膜的完整性,不能与PI结合。当细胞凋 亡晚期或发生继发性坏死时,细胞膜破坏,可以同时被Annexin V-FITC/PI着色。 所以如果是Annexin单阳性的细胞的话,就是凋亡早期细胞,如果Annexin,PI 双 阳性的话,即是坏死细胞。如下图所示:

二、FlowJo分析凋亡数据的过程

演示数据: "apoptosis"文件夹中的ZL-2011-12-20_400.fcs

1. 把凋亡样本拖入FlowJo,双击原始数据打开图形窗口。

X轴选择FSC-A,Y轴选择SSC-A。分析凋亡的细胞选择上图所示的细胞群体进行分析。细胞碎片不予分析。如下图所示:

2. 在SSC/FSC图中双击"分析的细胞群体",

X轴选择FITC,用来表示AnnexinV-FITC。Y轴选择PE-Texas,用来表示PI。用四分门设门工具界定活细胞和凋亡细胞。如下图所示:

三、凋亡数据结果分析

- 用四分门设门的原则:四分门设门要根据阴性对照界定阴性区。根据细胞分 群的趋势,四分门的界定线可设在阴性、阳性细胞的分群处
- 2. 上图中各个区域的含义:
 - Q1: (AnnexinV-FITC)-/PI+,此区域的细胞为坏死细胞。也可能有少数的晚期凋亡细胞在其中,甚至机械损伤的细胞也包含其中。

Q2: (AnnexinV+FITC)+/PI+, 此区域的细胞为晚期凋亡细胞。

- Q3: (AnnexinV-FITC)+/PI-, 此区域的细胞为早期凋亡细胞。
- Q4: (AnnexinV-FITC)-/PI-, 此区域的细胞为活细胞。

通常统计细胞凋亡率时采用Q2+Q3,晚期凋亡+早期凋亡群(即所有 AnnexinV阳性群)。

第七章 FlowJo软件分析细胞周期样本

一、细胞周期分析概述

细胞周期的检测是流式细胞仪最为广泛的应用之一。细胞周期是指以有丝分裂方式增殖的细胞从亲代分裂结束到子细胞分裂结束所经历的过程。通常由G1期、S期、G2期和M期组成。细胞在G1期完成必要的生长和物质准备,在S期完成染色体DNA的复制,在G2期进行必要的检查和修复,以保证DNA复制的准确性。在M期完成遗传到子细胞中的均等分配,使细胞进行分裂。

细胞周期检测的原理:

核酸染料可以与DNA分子特异性的结合,细胞周期检测中PI最为常用。PI为插入 性核酸荧光染料,能选择性的嵌入核酸DNA和RNA双链螺旋的碱基之间与之结 合,其结合的量与DNA的含量成正比例关系,用流式细胞仪进行分析,就可以 得到细胞周期各个阶段的DNA分布状态,从而计算出各个期的百分含量。如下 图所示:

二、FlowJo分析细胞周期数据的过程

演示数据: cell cycle 文件夹中的5206.001, PI标记

 设门选取目标细胞群体,将细胞碎片排除在外: 双击工作台中的5206.001样本,打开图形窗口。X轴选择FSC-H,Y轴选择 SSC-H,细胞碎片位于左下角的位置,设门选中目标细胞,如下图:

杭州艾米绿生物科技有限公司

 2. 设门选中要进行细胞周期分析的单细胞群体,排除粘连细胞(粘连在一起的 双细胞或多细胞团块等)的影响。

X轴选择FL2-W(width), Y轴选择FL2-A(area), 设门方式如下图:

BD的流式仪采集的数据:在进行周期分析的时候,通常是采用FL2-A与FL2-W(或者FL2-A与FL2H)进行设门。

Beckman的流式仪采集的数据:X轴选择FL3-LIN,用来表示PI的线性信号。 Y轴选择FL3-PEAK,用来表示PI的峰值信号。设门方式如下图:

FlowJo中文实用手册

杭州艾米绿生物科技有限公司

 在FlowJo工作台中选中"单细胞群体"这个节点,在菜单栏的"工具"中选择"细胞周期",打开周期分析窗口。得到G1期、S期、G2期细胞百分比,G1期CV 值和G2期CV值等数据。如下图所示:

三、细胞周期拟合的调整方法和步骤

视频演示网址: <u>http://www.flowjochina.com/content/tutorial-video#cellcycle</u> 1.周期拟合好坏的判断依据:

上图中粉色的曲线是周期拟合的模型曲线,黑色的为样本曲线。理想状况是粉色和黑色曲线吻合一致为最佳。拟合的好坏可以根据右边的RMS值来判断。

RMS(root mean square error)值越小越好,但是这只是一个相对值。比如:上面的 例子中,周期拟合的很好,RMS值为3.85。当周期拟合的不好的时候,可以通过 更换拟合模型或者更改限制条件进行调整。

2.更换周期拟合模型:

有Watson和Dean-Jett-Fox两种,用户可以选择任意一种进行分析,两种模型之间 没有实质的差别。可以比较两种模型拟合之后的RMS值的大小,选择RMS值小 的模型。如果周期拟合的时候出现不能进行拟合的提示"Could not fit.",如下图 所示,可以更换拟合模型的种类,下面这个例子中,需要将模型从Watson更换 为Dean-Jett-Fox。

3. 更改限制条件:

可以对G1峰与G2峰的位置(荧光强度的均数mean)和CV值进行限制。

- 通常来说,G2的位置为G1的2倍。你可以根据相对固定的那个峰来确 定另外一个峰的位置,如G1峰相对固定的话,就选择G2峰的均数为G1 的2倍(2G1);如果G2峰相对固定的话,就选择G1峰为G2峰的0.5倍。
- 2) 或者,手动界定G1峰和G2峰的位置,

输入G1峰的均数mean:

	[
均数 <mark>(mean):</mark>	G1 =		235

输入G1峰均数mean所在的范围:

均数 <mark>(</mark>	mean):	Within ra	ange:		
Min :	200		Max:	260	

3) 通常情况下,流式细胞周期实验中CV值的大小是由流式仪检测的敏感 度及使用的DNA染色剂的特异性决定的。理论上G1和G2的CV值是一致 的。在数据分析过程中,可以利用这一特点,将参数设置为,G1 CV =G2 CV,或G2 CV= G1 CV。

CV也可以设定为固定的数值。这个CV固定值的设定,不是随意的,而 是根据该组实验中某一个拟合的很好的对照数据为参考而设定的已知值。 因为我们假定在流式实验中,同组数据在条件一样的情况下,CV不会 有大的变动。

四、细胞周期结果分析

- 1. RMS: root mean square error,均方根误差。RMS值的大小反映了周期分析模型拟合结果与实际曲线的吻合程度,其值越小,说明吻合的越好。
- G1百分比:G1期细胞所占的百分比
 S百分比:S期细胞所占的百分比
 G2百分比:G2期细胞所占的百分比
- G1均数:G1期细胞荧光强度的平均数
 G2均数:G2期细胞荧光强度的平均数
- CV: coefficient of variation,变异系数。通常检测分辨率或精度由G0/G1峰的 CV来反映。影响CV的因素主要包括两方面: 仪器因素和样品制备及染色过 程对标本的人为影响。
 - G1 cv: G1峰的变异系数,其大小反映了G1峰的宽度,数值越小,峰越窄 G2 cv: G2峰的变异系数